Skip to main content
Log in

Accumulation of Astaxanthin by Co-fermentation of Spirulina platensis and Recombinant Saccharomyces cerevisiae

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to explore an effective, simple, and time-saving method for astaxanthin accumulation. Wild-type Saccharomyces cerevisiae as a bioreactor, the SpcrtR gene was first ligated with the signal peptide S to construct pYES2/NT-A-S-SpcrtR plasmid in Saccharomyces cerevisiae. The detection of SDS-PAGE and Western blotting protein proved that SpCRTR was successfully extracellular expressed in Saccharomyces cerevisiae. The target product astaxanthin was produced by co-fermentation of Spirulina platensis and recombinant Saccharomyces cerevisiae. The test results showed that after 18 h of fermentation, the astaxanthin concentration was highest in the mixed fermentation broth with 4% Spirulina platensis and recombinant Saccharomyces cerevisiae, and the content of astaxanthin was 0.25 ± 0.02 μg/mL. In addition, the source of astaxanthin was explored. During the fermentation process of the Saccharomyces cerevisiae strain, SpCRTR enzyme catalyzed the Spirulina platensis canthaxanthin, which almost completely converted into astaxanthin, providing a simple method for astaxanthin synthesis. Compared with culture of Haematococcus pluvialis, this culture route not only shortens culture time, but also eliminates the limitation of the conditions in the culture process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Lorenz, R. T., & Cysewski, G. R. (2000). Trends in biotechnology, 18, 160–167.

    Article  CAS  Google Scholar 

  2. Naguib, Y. M., & Yousry, M. A. (2000). Food chemistry, 48, 1150–1154.

    Article  CAS  Google Scholar 

  3. Krinsky, N. I., & Johnson, E. J. (2005). Molecular aspects of medicine, 26, 459–516.

    Article  CAS  Google Scholar 

  4. Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., & Watanabe, H. (2006). Journal of natural products, 69, 443–449.

    Article  CAS  Google Scholar 

  5. Goswami, G., Chaudhuri, S., & Dutta, D. (2010). World journal of microbiology and biotechnology, 26, 1925–1939.

    Article  CAS  Google Scholar 

  6. Guerin, M., Huntley, M. E., & Olaizola, M. (2003). Trends in biotechnology, 21, 210–216.

    Article  CAS  Google Scholar 

  7. Lin, Y. J., Lin, J. Y., Wang, D. S., Chen, C. H., & Chiou, M. H. (2017). Regulatory toxicology & pharmacology, 87, 95–105.

    Article  CAS  Google Scholar 

  8. O’Connor, I., & O’Brien, N. (1998). Journal of dermatological science, 16, 226–230.

    Article  Google Scholar 

  9. Huangfu, J., Liu, J., Sun, Z., Wang, M., Jiang, Y., Chen, Z. Y., & Chen, F. (2013). Food chemistry, 61, 7800–7804.

    Article  CAS  Google Scholar 

  10. Kumar, R., Salwe, K. L., & Kumarappan, M. (2017). Pharmacognosy research, 9, 161–167.

    Article  CAS  Google Scholar 

  11. Park, J. H., Yeo, I. J., Han, J. H., Suh, J. W., Lee, H. P., & Hong, J. T. (2018). Experimental dermatology, 27, 378–385.

    Article  CAS  Google Scholar 

  12. Li, Z., & Wang, H. (2015). Marine drugs, 13, 4310–4330.

    Article  CAS  Google Scholar 

  13. Borowitzka, M. A. (2013). Journal of applied phycology, 25, 743–756.

    Article  CAS  Google Scholar 

  14. Cardozo, K.H.M., Guaratini, T., Barros, M.P., Falcão, V.R., Tonon, A.P., Lopes, N.P., Campos, S., Torres, M.A., Souza, A.O., Colepicolo, P., & Pinto, E. (2007). Comparative biochemistry and physiology Part C146, 1–2.

  15. Ciapara, I. H., Valenzuela, L. F., & Goycoolea, F. M. (2006). Critical reviews in food science and nutrition, 46, 185–196.

    Article  CAS  Google Scholar 

  16. Cort, A., Ozturk, N., Akpinar, D., Unal, M., Yucel, G., Ciftcioglu, A., Yargicoglu, P., & Alsan, M. (2010). Regulatory toxicology & pharmacology, 58, 121–130.

    Article  CAS  Google Scholar 

  17. Ranga, R., Sarada, A. R., Baskaran, V., & Ravishankar, G. A. (2009). Journal of microbiology and biotechnology, 19, 1333–1341.

    PubMed  CAS  Google Scholar 

  18. Rao, A. R., Reddy, A. H., & Aradhya, S. M. (2010). Current trends in biotechnology and pharmacy, 4, 809–819.

    CAS  Google Scholar 

  19. Wang, B., Zhang, Z., Hu, Q., Sommerfeld, M., Lu, Y., & Han, D. (2014). Plos One, 9, e106679

  20. Liu, X., Chen, X., Liu, H., & Cao, Y. (2018). Journal of functional foods, 44, 127–136.

    Article  CAS  Google Scholar 

  21. Li, J., Zhu, D., Niu, J., Shen, S., & Wang, G. (2011). Biotechnology advances, 29, 568–574.

    Article  CAS  Google Scholar 

  22. Pan, H. L., She, X. X., Wu, H. L., Ma, J., Ren, D. F., & Lu, J. (2015). Journal of agricultural & food chemistry, 63, 7765–7774.

    Article  CAS  Google Scholar 

  23. Luo, A., Feng, J., Hu, B., Lv, J., Chen, C. Y., & Xie, S. (2017). Journal of food science, 82, 2591–2597.

    Article  CAS  Google Scholar 

  24. El-Sheekh, M. M., Hamad, S. M., & Gomaa, M. (2014). Brazilian archives of biology and technology, 57, 77–86.

    Article  CAS  Google Scholar 

  25. Kalafati, M., Jamurtas, A. Z., Nikolaidis, M. G., Paschalis, V., Theodorou, A. A., Sakellariou, G. K., Koutedakis, Y., & Kouretas, D. (2010). Medicine & science in sports & exercise, 42, 142–151.

    Article  Google Scholar 

  26. Rasool, M., Sabina, E. P., & Lavanya, B. (2006). Biological & pharmaceutical bulletin, 29, 2483–2487.

    Article  CAS  Google Scholar 

  27. Canchihuamán, P., Méndez, P., Muñoz, H., Durán, T., & Oropeza, J. (2010). Lipids in health and disease, 9, 35–41.

    Article  Google Scholar 

  28. Oh, S. H., Ahn, J., Kang, D. H., & Lee, H. Y. (2011). Lipids in health and disease, 13, 205–214.

    CAS  Google Scholar 

  29. Ravi, M., De, S. L., Azharuddin, S., & Paul, S. F. D. (2012). Medicine & science in sports & exercise, 2, 73–83.

    Google Scholar 

  30. Yu, B., Wang, J., Suter, P. M., Russell, R. M., & Grusak, M. A. (2012). British journal of nutrition, 108, 611–619.

    Article  CAS  Google Scholar 

  31. Schwartz, J., & Shklar, G. (1988). Nutrition and cancer, 11, 35–40.

    Article  CAS  Google Scholar 

  32. An, J., Gao, F., Ma, Q., & Xiang, Y. (2017). Algal research, 25, 464–472.

    Article  Google Scholar 

  33. Liu, Z. J., Gao, X., Cai, Y., Yang, X., Fu, X. L., Chen, J., Zhang, B., & Xin, H. M. (2009). Plasmid, 62, 10–15.

    Article  CAS  Google Scholar 

  34. Neshani, A., Zare, H., Akbari Eidgahi, M.R., Hooshyar Chichaklu, A., Movaqar, A., Ghazvini, K. (2018). Helicobacter, e12555

  35. Wang, X., Ma, J., Bai, X., & Yan, H. (2019). Food & bioproducts processing, 118, 318–325.

    Article  CAS  Google Scholar 

  36. Sheetz, R.M., & Dickson, R.C. Genetics, 98, 729–745

  37. Verwaal, R., Wang, J., Meijnen, J. P., Visser, H., Sandmann, G., Berg, J. A., & Ooyen, A. J. J. (2007). Applied and environmental microbiology, 73, 4342–4350.

    Article  CAS  Google Scholar 

  38. Ukibe, K., Hashida, K., Yoshida, N., & Takagi, H. (2009). Applied and environmental microbiology, 75, 7205–7211.

    Article  CAS  Google Scholar 

  39. Gassel, S., Breitenbach, J., & Sandmann, G. (2014). Applied Microbiology and Biotechnology, 98, 345–350.

    Article  CAS  Google Scholar 

  40. Fang, L., Zhang, J.K., Fei, Z.N. & Wan, M.X. (2020). Bioresources and bioprocessing, 7.5

  41. Liu, Y.H., Alimujiang, A., Wang, X., Luo, S.W., Balamurugan, S., Yang, W.D., Liu, J.S., Zhang, L., & Li, H.Y (2019). Bioresource technology, 289,121720

  42. Miao, F. P., Lu, D. Y., Li, Y. G., & Zeng, M. T. (2006). Analytical biochemistry, 352, 176–181.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Key R&D Program of China (2019YFD1002400), the Beijing Nova Program (Z201100006820048), and the National promotion project of scientific and technological achievements in forestry and grassland (2020133135).

Author information

Authors and Affiliations

Authors

Contributions

Difeng Ren, Jun Ma, Huan-huan Yan made substanitial contributions to the design of the work, analysis, experiments and wrote the manuscript. Jun Ma, Chen-qiang Qin and Ya-xin revised it critically for important content and approved the version to be published.

Corresponding author

Correspondence to Di-feng Ren.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors are consent to participate in the manuscript.

Consent for Publication

All authors are consent to publish the manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jun Ma and Huan-Huan Yan are co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Yan, Hh., Qin, Cq. et al. Accumulation of Astaxanthin by Co-fermentation of Spirulina platensis and Recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 194, 988–999 (2022). https://doi.org/10.1007/s12010-021-03666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03666-x

Keywords

Navigation