Skip to main content
Log in

Green Synthesis and Characterisation of Silver Nanoparticles Using Cassia tora Seed Extract and Investigation of Antibacterial Potential

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nanoparticle research is fascinating and getting hold of consequences due to the wide variety of applications in the biomedical field. Green synthesis of nanoparticles is a cost-effective and eco-friendly approach. It can be synthesised using fungi, algae, plant, yeast, bacteria, microbial enzymes etc. Our current research study focuses on the green synthesis of silver nanoparticles using seed extract of Cassia tora. The colour change from yellow to red colour confirms the formation of silver nanoparticles. The synthesised silver nanoparticles were characterised by Ultraviolet–Visible spectroscopy, Fourier-transform infrared (FTIR), X-ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and antibacterial efficacy against three different strains were analysed. The surface plasmon resonance of synthesised AgNPs using Cassia tora seed extract shows maximum absorption peak at 423 nm in UV–visible spectroscopy. X-ray diffraction displays the crystalline nature of synthesised AgNPs and they exhibited four distinct peaks at 36.69°, 42.92°, 63.27° and 76.46°. The particle size of synthesised AgNPs observed through SEM was found to be 55.80 nm, 58.97 nm, 61.06 nm, 63.26 nm and 64.80 nm. S.aureus exhibited maximum zone of inhibition of 12 mm and 13 mm when treated with 25 and 50 μl of the synthesised nanoparticles. Thus, the green synthesised silver nanoparticle using Cassia tora seed extract proved to possess strong anti-bacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supporting information.

References

  1. Elseady, N. S. M., Khamis, N. A. G. A., AbdelGhani, S., Rabea H. M., Elanany, M. G., Alsheshtawi, K. N., & Abdelrahim M. E. Antibiotic sensitivity /resistance pattern of hospital acquired blood stream infection in children cancer patients. A retrospective study. International Journal of Clinical Practice, 8, 14617.

  2. Khosari, A. D., & Behzadi, A. (2006). Evaluation of the antibacterial activity of the seed well of Quercus brantii on some gram negative bacteria. Pakistan Journal of Medical Sciences, 22, 429–432.

  3. Nayeb, F. D., Mohammad, A., Abbas, R. F., & Fereshteh, F. (2016). Survey of communicable diseases surveillance system in hospitals of Iran; a qualitive approach. Global Journal of Health Science, 8, 44–57.

    Google Scholar 

  4. Sefton, A. M. (2000). The impact of resistance on management of urinary tract infection. International Journal of Antimicrobial Agents, 16, 489–491.

    Article  CAS  PubMed  Google Scholar 

  5. Vincet, K., & Coleman, R. (2008). Bacterial skin and soft tissue infections in adults; a review of their epidemiology, pathogenesis, diagnosis, treatment and site of care. The Canadian Journal of Infectious Diseases & Medical Microbiology, 19, 173–184.

    Article  Google Scholar 

  6. Heather, L. W., Kathryn, D., & Christopher, D. M. (2019). Optimal antimicrobial duration for common bacterial infections. Australian Prescriber, 42, 5–9.

    Article  Google Scholar 

  7. Abayomi, S., Eyitope, O., & Adedeji, O. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary and Alternative Medicines, 10, 210–229.

    Google Scholar 

  8. Nasri, H., & Shirzad, H. (2013). Toxicity and safety of medicinal plants. J Herb Med Pharmacol, 2, 21–22.

    Google Scholar 

  9. Bachir, B., & Atanasio, P. (2020). Medicinal plants as sources of active molecules against COVID19. Frontiers in Pharmacology, 2020(11), 1189.

    Google Scholar 

  10. Asba, A., & Bhot, M. (2017). Evaluation of phytochemical of Cassia toraLinn and its cytotoxicity assay using brine shrimp. Int J Pharmacogphytochem Res, 9, 587–595.

    Google Scholar 

  11. Santosh, K. S., & Anand, K. (2013). The probable medicinal usage of Cassia tora;A overview. Online Journal of Biological Sciences, 3(1), 13–17.

    Google Scholar 

  12. Valentine, C. M., David, P. T., Rita, A. D., Kofi, A., Abraham, Y. M., Issac, K. A., Julia, W. J., Xavier, C., Solomon, H., & Baldwayn, T. (2017). Mosquito larvicidal activity of Cassia tora seed extract and its key anthraquinones aurantio – obtusin and obtusin. Parasites and Vectors, 10(1), 562.

    Article  Google Scholar 

  13. Kim, Y. M., Lee, C. H., Kim, H. G., & Lee, H. S. (2004). Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. Journal of Agriculture and Food Chemistry, 52, 6096–6100.

    Article  CAS  Google Scholar 

  14. Patil, U. K., Saraf, S., & Dixit, V. K. (2004). Hypolipidemic activity of seeds of Cassia toralinn. Journal of Ethnopharmacology, 90, 249–252.

    Article  PubMed  Google Scholar 

  15. Rajiv, S., Santosh, S., & Sugandha, S. (2010). Nanotechnology: The future medicine. Journal of Cutaneous Aesthetic Surgery, 3, 32–33.

    Article  Google Scholar 

  16. Pandurangan, A. K., Kanagesan, S., Narayanaswamy, R., Esa, N. M., & Padmanabhan, P. (2015). In A. M. Grumezescu (Ed.), Applications of NanoBioMaterials, Volume VII: Nanobiomaterials in Cancer Therapy. Chapter 11. NanoBioMaterials based delivery of drugs in various cancer therapies: Classifying the mechanisms of action (using Biochemical and Molecular biomarkers). Elsevier Publisher, pp. 331–365.

  17. Didier, A. (2016). Introduction to nanomedicine. Molecules, 21(1), 4.

    Google Scholar 

  18. Barahuie, F., Dorniani, D., Saifullah, B., Gothai, S., Hussein, M. Z., Pandurangan, A. K., Arulselvan, P., & Norhaizan, M. E. (2017). Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug delivery system. International Journal of Nanomedicine, 12, 2361–2372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hemlata, Prem, R. M., Arvind, P. S., & Kiran, K. T. (2020). Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega, 5, 5520–5528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silva, G. A. (2004). Introduction to nanotechnology and its applications to medicine. Surgical Neurology, 61, 216–220.

    Article  PubMed  Google Scholar 

  21. Eun–Young, A., Hang, J., & Younie, P. (2019). Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green – synthesized by plant extracts. Matter Science and Engeneering: C, 101, 204–216.

    Article  Google Scholar 

  22. Logothetidis, S. (2006). Nanotechnology in medicine: The medicine of tomorrow and nanomedicine. Hippokratia, 10, 7–21.

    Google Scholar 

  23. Ram, P., & Vyshnava, S. S. (2013). Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygiumcurmini. Journal of Nanoparticles, 2013, 431218.

    Google Scholar 

  24. Kanniah, P., Chelliah, P., Thangapandi, J. R., Gnanadhas, G., Mahendran, V., & Robert, M. (2021). Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. International Journal of Biological Macromolecules, S0141–8130(21), 01715–01723.

    Google Scholar 

  25. Khan, A. A., Alanazi, A. M., Alsaif, N., Wani, T. A., & Bhat, M. A. (2021). Pomegranate peel induced biogenic synthesis of silver nanoparticles and their multifaceted potential against intracellular pathogen and cancer. Saudi Journal of Biological Sciences, 28(8), 4191–4200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aldayel, F. M., Alsobeg, M. S., & Khalifa, A. (2021). In vitro antibacterial activities of silver nanoparticles synthesised using the seed extracts of three varieties of Phoenix dactylifera. Brazilian Journal of Biology, 82, e242301.

    Article  CAS  Google Scholar 

  27. Jha, A. K., Zamani, S., & Kumar, A. (2021). Green synthesis and characterization of silver nanoparticles using Pteris vitata extract and their therapeutic activities. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/bab.2235

    Article  PubMed  Google Scholar 

  28. Emima Jeronsia, J., Ragu, R., Jerline Mary, A., & Jerome Das, S. (2021). Elucidating the structural, anticancer, and antibacterial traits of Punica granatum peel extracts-mediated Ag and Ag/GO nanocomposites. Microscopy Research and Technique. https://doi.org/10.1002/jemt.23883

    Article  Google Scholar 

  29. Csakvari, A. C., Moisa, C., Radu, D. G., Olariu, L. M., Lupitu, A. I., Panda, A. O., Pop, G., Chambre, D., Socoliuc, V., Copolovici, L., & Copolovici, D. M. (2021). Green synthesis, characterization, and antibacterial properties of silver nanoparticles obtained by using diverse varieties of Cannabis sativa leaf extracts. Molecules, 26(13), 4041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arsène, M. M. J., Podoprigora, I. V., Davares, A. K. L., Razan, M., Das, M. S., & Senyagin, A. N. (2021). Antibacterial activity of grapefruit peel extracts and green-synthesized silver nanoparticles. Veterinary World, 14(5), 1330–1341.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ansari, M. A., & Alzohairy, M. A. (2018). One pot Facile green synthesis of silver nanoparticles using seed extract of Phoneix dactylifera and their bactericidal potential against MRSA. Evidence-based Complementary and Alternative Medicine, 2018, 1860280.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yangqing, H., Fenfei, W., Zhanying, M., Hao, Z., Qian, Y., Binghua, Y., Zhengrui, H., Cun, Z., & Qian, Z. (2017). Green synthesis of silver nanoparticles using seed extract of Alpinia kastumadai and their antioxidant, cytotoxicity and antibacterial activities. RSC Advances, 7, 39842–39851.

    Article  Google Scholar 

  33. Ajitha, B., Ashokkumar, R. Y., Sreedhara, R. P., Suneetha, Y., Hwan–Jin, J., & Chi, W. A. (2016). Instant biosynthesis of silver nanoparticle using Lawsonia inermis leaf extract: Innate catalytic, antimicrobial and antioxidant activities. Journal of Molecular Liquids, 219, 474–481.

    Article  CAS  Google Scholar 

  34. Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticle using Capsicum annum L. extract. Green Chemistry, 9, 852–858.

    Article  CAS  Google Scholar 

  35. Sampath, S., Sunderam, V., Sameer, S. S. M., Swarnalakshmi, K., & Vishal, L. A. (2020). Green synthesis of silver nanoparticles using Artocarpus hirsutus seed extract and its antibacterial activity. Current Pharmaceutical Biotechnology, 21, 980–989.

    Article  Google Scholar 

  36. Shakeel, A., Saifulla, Mudasir, A., Babu, L. S., & Saiqa, I. (2016). Green synthesis of silver nanoparticles using Azardirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Science, 9(1), 1–7.

    Article  Google Scholar 

  37. Faizan, A. Q., Anam, S., Haris, M. K., Fohad, M. H., Rais, A. K., Bader, A. A., & Iqbal, A. Antibacterial effect of silver nanoparticle synthesized using Murraya koenigii against multidrug resistant pathogens. Bioinorganic Chemistry and Applications, 2019, 4649506

  38. Rajeshkumar, S., & Malarkodi, C. In vitro Antibacterial activity and mechanism of silver nanoparticles against food borne pathogens. Bioinorganic Chemistry and Applications, 2014, 581890

  39. Kumar, K. M., Mandal, B. K., Sinha, M., & Krishnakumar, V. (2012). Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, 490–494.

    Article  Google Scholar 

  40. Pawar, H. A., & Lalitha, K. G. (2015). Extraction characterization and molecular weight determination of Senna tora seed polysaccharide. International Journal of Biomaterials, 2015, 928679.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Khairudin, K., Sukiran, N. A., Goh, H. H., Baharum, S. N., & Noor, N. M. (2014). Direct determination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy. Metabolomics, 10, 203–211.

    Article  CAS  Google Scholar 

  42. Devanesan, S., & AlSalhi, M. S. (2021). Green synthesis of silver nanoparticles using the flower extract of Abelmoschus esculentus for cytotoxicity and antimicrobial studies. International Journal of Nanomedicine, 16, 3343–3356.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Krychowiak-Maśnicka, M., Krauze-Baranowska, M., Godlewska, S., Kaczyński, Z., Bielicka-Giełdoń, A., Grzegorczyk, N., Narajczyk, M., Frackowiak, J. E., & Krolicka, A. (2021). Potential of silver nanoparticles in overcoming the intrinsic resistance of pseudomonas aeruginosa to secondary metabolites from carnivorous plants. International Journal of Molecular Sciences, 22(9), 4849.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Arzoo, S., Naqvi, Z., Hussain, M., Shamim, S., Zeb, T. F., & Ali, S. (2020). Production and antimicrobial activity of silver nanoparticles synthesized from indigenously isolated Pseudomonas aeruginosa from Rhizosphere. Pakistan Journal of Pharmaceutical Sciences, 33(6(Supplementary)), 2815–2822.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SN and AKP designed the experiment; SN and PS performed the experiments. SN, AKP, SKA and AAB analysed the results. SN wrote the manuscript. AKP and SKA edited the final version of the manuscript.

Corresponding author

Correspondence to Ashok Kumar Pandurangan.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

The authors agreed to participate in this work.

Consent for Publication

The authors agreed to publish this work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawabjohn, M.S., Sivaprakasam, P., Anandasadagopan, S.K. et al. Green Synthesis and Characterisation of Silver Nanoparticles Using Cassia tora Seed Extract and Investigation of Antibacterial Potential. Appl Biochem Biotechnol 194, 464–478 (2022). https://doi.org/10.1007/s12010-021-03651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03651-4

Keywords

Navigation