Skip to main content
Log in

Enhanced Tolerance of Spathaspora passalidarum to Sugarcane Bagasse Hydrolysate for Ethanol Production from Xylose

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

During the pretreatment and hydrolysis of lignocellulosic biomass to obtain a hydrolysate rich in fermentable sugars, furaldehydes (furfural and hydroxymethylfurfural), phenolic compounds, and organic acids are formed and released. These compounds inhibit yeast metabolism, reducing fermentation yields and productivity. This study initially confirmed the ability of Spathaspora passalidarum to ferment xylose and demonstrated its sensibility to the inhibitors present in the hemicellulosic sugarcane bagasse hydrolysate. Then, an adaptive laboratory evolution, with progressive increments of hydrolysate concentration, was employed to select a strain more resistant to hydrolysate inhibitors. Afterward, a central composite design was performed to maximize ethanol production using hydrolysate as substrate. At optimized conditions (initial cell concentration of 30 g/L), S. passalidarum was able to produce 19.4 g/L of ethanol with productivity, yield, and xylose consumption rate of 0.8 g/L.h and 0.4 g/g, respectively, in a sugarcane bagasse hemicellulosic hydrolysate. A kinetic model was developed to describe the inhibition of fermentation by substrate and product. The values obtained for substrate saturation and inhibition constant were Ks = 120.4 g/L and Ki = 1293.4 g/L. Ethanol concentration that stops cell growth was 30.1 g/L. There was an agreement between simulated and experimental results, with a residual standard deviation lower than 6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors confirm that the data and materials supporting the findings of this article are available within the article and from the corresponding author (S. B. G.) upon reasonable request.

References

  1. Mata, T. M., Tavares, T. F., Meireles, S., & Caetano, N. S. (2015). Bioethanol from brewers’ spent grain: pentose fermentation. Chemical Engineering Transactions, 43, 241–246

    Google Scholar 

  2. Oliva, J. M., Negro, M. J., Manzanares, P., Ballesteros, I., Chamorro, M. A., Sáez, F., Ballesteros, M., & Moreno, A. D. (2017). A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic conversion within a fermentation-based biorefinery perspective. Fermentation, 3(2), 15. https://doi.org/10.3390/fermentation3020015.

    Article  CAS  Google Scholar 

  3. Caetano, N. S., Moura, R. F., Meireles, S., Mendes, A. M., & Mata, T. M. (2013). Bioethanol from brewer’s spent grains: acid pretreatment optimization. Chemical Engineering Transactions, 35, 1021–1026

    Google Scholar 

  4. Bergmann, J. C., Trichez, D., Morais Junior, W. G., Ramos, T. G. S., Pacheco, T. F., Carneiro, C. V., Hororato, V. M., Serra, L. A., & Almeida, J. R. M. (2019). Biotechnological application of non-conventional yeasts for xylose valorization. In A. Sibirny (Ed.), Non-conventional yeasts: from basic research to application. Cham: Springer

    Google Scholar 

  5. Rodrussamee, N., Sattayawat, P., & Yamada, M. (2018). Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2. BMC Microbiology, 18(1), 73.

    Article  Google Scholar 

  6. Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresource and Bioprocessing, 4(7), 7. https://doi.org/10.1186/2017/s40643-017-0137-9.

    Article  Google Scholar 

  7. Almeida, J. R. M., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., & Gorwa-Grauslund, M. F. (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemistry, Technology and Biotechnology, 82(4), 340–349

    Article  CAS  Google Scholar 

  8. Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17(3), 320–326

    Article  CAS  Google Scholar 

  9. Morales, P., Gentina, J. C., Aroca, G., & Mussatto, S. I. (2017). Development of an acetic acid tolerant Spathaspora passalidarum strain through evolutionary engineering with resistance to inhibitors compounds of autohydrolysate of Eucapyptus globulus. Industrial Crops and Products, 106, 5–11

    Article  CAS  Google Scholar 

  10. Nguyen, N. H., Suh, S. O., Marshall, C. J., & Blackwell, M. (2006). Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycological Research, 110, 1232–1241

    Article  Google Scholar 

  11. Long, T. M., Su, Y.-K., Higbee, A., Willis, L. B., & Jeffries, T. W. (2012). Co-fermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Applied and Environmental Microbiology, 78(16), 5492–5500

    Article  CAS  Google Scholar 

  12. Veras, H. C. T., Parachin, N. S., & Almdeida, J. R. M. (2017). Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microbial Cell Factories, 16(1), 153

    Article  Google Scholar 

  13. Hou, X., & Yao, S. (2012). Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Applied Microbiology and Biotechnology, 93(6), 2591–2601

    Article  CAS  Google Scholar 

  14. Soares, L. B., Bonan, C. I. D. G., Biazi, L. E., Dionísio, S. R., Bonatelli, M. L., Andrade, A. L. D., Renzano, E. C., Costa, A. C., & Ienczak, J. L. (2020). Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass and Bioenergy, 137, 105549

    Article  CAS  Google Scholar 

  15. Nakanishi, S. C., Soares, L. B., Biazi, L. E., Nascimento, V. M., Costa, A. C., Rocha, G. J. M., & Ienezak, J. L. (2017). Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolysate by Spathaspora passalidarum and Scheffersomyces stipitis. Biotechnology and Bioengineering, 114, 10

    Article  Google Scholar 

  16. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., & Sluiter, J. (2012). Templeton, and D. Crocker, NREL/TP-510-42618 analytical procedure—determination of structural carbohydrates and lignin in biomass. Laboratorial Analysis Procedure, 17. NREL/TP-510-42618

  17. Haaland, P. D. (1989). Experimental design in biotechnology. New York: Marcel Dekker Inc

  18. Ghose, T. K., & Tyagi, R. D. (1979). Rapid ethanol fermentation of cellulose hydrolysate. II Product and substrate inhibition and optimization of fermentor design. Biotechnology and Bioengineering, 21(8), 1401–1420

    Article  CAS  Google Scholar 

  19. Yang, X. S. (2008). Nature-inspired metaheuristic algorithms. Luniver Press.

  20. Lobato, F. S., & Steffen Jr., V. (2013). Multi-objective optimization firefly algorithm applied to (bio) chemical engineering system design. American Journal of Applied Mathematics and Statistics, 1(6), 110–116

    Article  Google Scholar 

  21. Roeva, O. (2012). Optimization of E. coli cultivation model parameters using firefly algorithm. International Journal of Bioautomation, 16(1), 23–32

    Google Scholar 

  22. Cleran, Y., Thibault, J., Cheruy, A., & Corrieu, G. (1991). Comparison of prediction performances between models obtained by the group method of data handling and neural networks for the alcoholic fermentation rate in enology. Journal of Fermentation and Bioenginerring, 71(5), 356–362

    Article  CAS  Google Scholar 

  23. Su, Y. K., Willis, L. B., & Jeffries, T. W. (2015). Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Biotechnology and Bioengineering, 112, 3

    Article  Google Scholar 

  24. Souza, B. R. (2017). Análise da tolerância aos ácidos carboxílicos por leveduras potencialmente utilizadas na produção de etanol de segunda geração. Universidade Federal de Santa Catarina, Ciências Biológicas

  25. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters. An introduction to design, data analysis and model building. Nova York: Wiley

    Google Scholar 

  26. Yu, H., Guo, J., Chen, Y., Fu, G., Li, B., Guo, X., & Xiao, D. (2017). Efficient utilization of hemicellulose in alcali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum UI-58. Bioresource Technology, 232, 168–175

    Article  CAS  Google Scholar 

  27. Farias, D., de Andrade, R. R., & Maugeri-Filho, F. (2014). Kinetic modeling of ethanol production by Scheffersomyces stipitis from xylose. Applied Biochemistry and Biotechnology, 172, 361–379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors.

Conceived and designed the experiments: TFP, BRCM

Analyzed the data: TFP, WGMJr, JRMA, SBG

Wrote the paper: TFP, WGMJr, JRMA, SBG

Corresponding author

Correspondence to Sílvia B. Gonçalves.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

All authors have given consent to participate.

Consent to Publish

All authors have given approval of the manuscript to be published.

Competing Interests

The authors confirm that this article content has no conflict of interest. The authors also declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco, T.F., Machado, B.R.C., de Morais Júnior, W.G. et al. Enhanced Tolerance of Spathaspora passalidarum to Sugarcane Bagasse Hydrolysate for Ethanol Production from Xylose. Appl Biochem Biotechnol 193, 2182–2197 (2021). https://doi.org/10.1007/s12010-021-03544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03544-6

Keywords

Navigation