Skip to main content

Advertisement

Log in

Enhanced Bioethanol Fermentation by Sonication Using Three Yeasts Species and Kariba Weed (Salvinia molesta) as Biomass Collected from Lake Victoria, Uganda

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Kariba weed (Salvinia molesta) was used as biomass feedstock for ethanol production by separate hydrolysis and fermentation (SHF). Monosaccharides from Kariba weed hydrolysate were produced using thermal acid hydrolysis, sonication, and enzymatic saccharification. The optimal conditions for thermal acid hydrolysis of 12% (w/v) Kariba weed slurry were evaluated as 200 mM HNO3 at 121 °C for 60 min yielding 10.2 g/L monosaccharides. Sonication for 45 min before enzymatic saccharification yielded more monosaccharides to 18.7 g/L. Enzymatic saccharification with 16 U/mL Cellic CTec2 produced 35.4 g/L monosaccharides. Fermentation was performed using Saccharomyces cerevisiae, Kluyveromyces marxianus, or Pichia stipitis with sonicated Kariba weed hydrolysate. The control fermentations were carried out using Kariba weed hydrolysate without sonication. The improvement of ethanol production from sonicated Kariba weed hydrolysate using P. stipitis produced 15.9 g/L ethanol with ethanol yield coefficient YEtOH = 0.45, K. marxianus produced 14.7 g/L ethanol with YEtOH = 0.41. S. cerevisiae produced the lowest yield of 13.2 g/L ethanol with YEtOH = 0.37 as it utilized only glucose not xylose. Sonication of Kariba weed was essential in the ethanol production to enhance the productivity of monosaccharides. P. stipitis was determined as the best yeast species using hydrolysates with the mixture of glucose and xylose to produce ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chiari, L., & Zecca, A. (2011). Constraints of fossil fuels depletion on global warming projections. Energy Policy, 39(9), 5026–5034.

    Article  Google Scholar 

  2. Schenk, P. M., & Thomas-hall, S. R. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43.

    Article  Google Scholar 

  3. Dias, M. O. S., Ensinas, A. V., Nebra, S. A., Maciel, R., Rossell, C. E. V., Regina, M., & Maciel, W. (2009). Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chemical Engineering Research and Design, 87(9), 1206–1216.

    Article  CAS  Google Scholar 

  4. Khan, S. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13(2009), 2361–2372.

    Article  CAS  Google Scholar 

  5. Chiaramonti, D., Prussi, M., Ferrero, S., Oriani, L., Ottonello, P., Torre, P., & Cherchi, F. (2012). Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass and Bioenergy, 46, 25–35.

    Article  CAS  Google Scholar 

  6. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101(13), 4851–4861.

    Article  CAS  PubMed  Google Scholar 

  7. Ghadiryanfar, M., Rosentrater, K. A., Keyhani, A., & Omid, M. (2016). A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews, 54, 473–481.

    Article  CAS  Google Scholar 

  8. Mcintosh, D., King, C., & Fitzsimmons, K. (2003). Tilapia for biological control of giant salvinia. Journal of Aquatic Plant Management, 41, 28–31.

    Google Scholar 

  9. Witt, A., Witt, A., Beale, T., & Van Wilgen, B. W. (2018). An assessment of the distribution and potential ecological impacts of invasive alien plant species in eastern Africa. Transactions of the Royal Society of South Africa, 73(3), 217–236.

    Article  Google Scholar 

  10. Malik, A. (2007). Environmental challenge vis a vis opportunity: the case of water hyacinth. Environment International, 33(1), 122–138.

    Article  CAS  PubMed  Google Scholar 

  11. Andama, M., Ongom, R., & Lukubye, B. (2017). Proliferation of Salvinia molesta at lake Kyoga landing sites as a result of anthropogenic influences. Journal of Geoscience and Environment Protection., 5, 160–173.

    Article  Google Scholar 

  12. Bruszt, G., Ammour, T., Claussen, J., Ofir, Z., Saxena, N. C., & Turner, S. (2003). IUCN – The world conservation union external review. Gland: IUCN – The World Conservation Union.

    Google Scholar 

  13. Owens, C., & Dick, G. O. (2015). Effects of pH on growth of Salvinia molesta Mitchell. Journal of Aquatic Plant Management, 43, 34–38.

    Google Scholar 

  14. Bamulangaki Sempijja, V. (2019). Allocate funds control aquatic weed kadaga. Minister of agriculture animal industry and fisheries, Minister of Agriculture, Uganda.

  15. Kaur, M., Kumar, M., Sachdeva, S., & Puri, S. K. (2018). Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresource Technology, 251, 390–402.

    Article  CAS  PubMed  Google Scholar 

  16. Namadi, M. M. (2013). Evaluation of sugar content and bioethanol potentials of some freshwater biomass. Journal of Renewable and Sustainable Energy, 2(6), 201–204.

    Article  CAS  Google Scholar 

  17. Mubarak, M., Gupta, P., Shaija, A., & Suchithra, T. V. (2017). Production of bioethanol from Salvinia molesta and its utilization in single cylinder SI engine. Journal of Advance in Engineering Research, 4(1), 67–72.

    Google Scholar 

  18. Thomas Klasson, K. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials and Bioenergy, 3(1), 25–z31.

    Article  CAS  Google Scholar 

  19. AOAC (Association of Official Analysis Chemists). (1995). Official methods of analysis of the association of official analytical chemists. Arlington: Association of Official Analysis Chemists.

    Google Scholar 

  20. Moozhiyil, M., & Pallauf, J. (1986). Chemical composition of the water fern, Salvinia molesta, and its potential as feed source for ruminants. Economic Botany, 40(3), 375–383.

    Article  CAS  Google Scholar 

  21. Zouhair, F. Z., Benali, A., Kabbour, M. R., EL Kabous, K., El Maadoudi, E. h., Bouksaim, M., & Essamri, A. (2018). Typical characterization of argane pulp of various Moroccan areas: a new biomass for the second generation bioethanol production. Journal of the Saudi Society of Agricultural SciencesIn press. https://doi.org/10.1016/j.jssas.2018.09.004.

  22. Room, P. M., & Thomas, P. A. (1986). Nitrogen, phosphorus and potassium in Salvinia molesta Mitchell in the field: effects of weather, insect damage, fertilizers and age. Aquatic Botany. https://doi.org/10.1016/0304-3770(86)90058-6.

  23. Lu, X., Zhang, Y., & Angelidaki, I. (2009). Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. Bioresource Technology, 100(12), 3048–3053.

    Article  CAS  PubMed  Google Scholar 

  24. Rosgaard, L., Andric, P., Dam-Johansen, K., Pedersen, S., & Meyer, A. S. (2007). Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Applied Biochemistry and Biotechnology, 143(1), 27–40.

    Article  CAS  PubMed  Google Scholar 

  25. Redding, A. P., Wang, Z., Keshwani, D. R., Cheng, J. J., Redding, A. P., Wang, Z., & Keshwani, D. R. (2010). High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresource Technology, 102(2), 1415–1424.

    Article  PubMed  CAS  Google Scholar 

  26. Sukwong, P., Sunwoo, I. Y., Jeong, D. Y., Kim, S. R., Jeong, G. T., & Kim, S. K. (2019). Improvement of bioethanol production by Saccharomyces cerevisiae through the deletion of GLK1, MIG1 and MIG2 and overexpression of PGM2 using the red seaweed Gracilaria verrucosa. Process Biochemistry, 89, 134–145.

    Article  CAS  Google Scholar 

  27. Dziekońska-Kubczak, U., Berłowska, J., Dziugan, P., Patelski, P., Pielech-Przybylska, K., & Balcerek, M. (2018). Nitric acid pretreatment of Jerusalem artichoke stalks for enzymatic saccharification and bioethanol production. Energies, 11(8), 2153–2169.

    Article  CAS  Google Scholar 

  28. Badal, C. S., Loren, B. I., Michael, A. C., & Victor, Y. W. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Biotechnology Progress, 21(3), 816–822.

    Google Scholar 

  29. Ur Rehman, M. S., Kim, I., Chisti, Y., & Han, J. I. (2012). Use of ultrasound in the production of bioethanol from lignocellulosic biomass. Energy Education Science and Technology Part A: Energy Science and Research, 30(2), 1931–1410.

    Google Scholar 

  30. Luo, J., Fang, Z., & Smith, R. L. (2014). Ultrasound-enhanced conversion of biomass to biofuels. Progress in Energy and Combustion Science, 41(1), 56–93.

    Article  Google Scholar 

  31. Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., & Zacchi, G. (2006). Bio-ethanol - the fuel of tomorrow from the residues of today. Trends in Biotechnology, 24(12), 549–556.

    Article  PubMed  CAS  Google Scholar 

  32. Sunwoo, I. Y., Nguyen, T. H., Sukwong, P., Jeong, G. T., & Kim, S. K. (2018). Enhancement of ethanol production via hyper thermal acid hydrolysis and co-fermentation using waste seaweed from Gwangalli Beach, Busan. Korea. J. Microbiol. Biotechnol., 28(3), 401–408.

    Article  CAS  PubMed  Google Scholar 

  33. Singla, A., Paroda, S., Dhamija, S. S., Goyal, S., Shekhawat, K., Amachi, S., & Inubushi, K. (2012). Bioethanol production from xylose: problems and possibilities. Journal of Biofuels, 3(1), 39–49.

    Article  Google Scholar 

  34. Ofori-Boateng, C., & Lee, K. T. (2014). Ultrasonic-assisted simultaneous saccharification and fermentation of pretreated oil palm fronds for sustainable bioethanol production. Fuel, 119, 285–291.

    Article  CAS  Google Scholar 

  35. SuperPro Designer ® Intelligen Suit TM, 908, 74–102. Available from www.Kuhnunsa.co.kr

  36. Rogers, P. L., Jeon, Y. J., & Svenson, C. J. (2006). Application of biotechnology to industrial sustainability. Process. Saf. Environ., 84(5), 329–336.

    Article  CAS  Google Scholar 

  37. Bussemaker, M. J., & Zhang, D. (2013, March 13). Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Industrial and Engineering Chemistry Research, 52(10), 3563–3580.

    Article  CAS  Google Scholar 

  38. Katahira, S., Mizuike, A., Fukuda, H., & Kondo, A. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Applied Microbiology and Biotechnology, 72(6), 1136–1143.

    Article  CAS  PubMed  Google Scholar 

  39. Kim, S. K., Kong, I. S., Kong, J. Y., Kim, Y. S., & Park, D. H. (1995). Process simulation for the production of porcine growth hormone using CAD program. KSBB J., 10(1), 97–104.

    Google Scholar 

  40. Gandla, M. L., Martin, C., & Leif, J. J. (2018). Analytical enzymatic saccharification of lignocellulosic biomass for conversion to biofuels and bio-based chemicals. Energies, 11(11), 2936–2955.

    Article  CAS  Google Scholar 

  41. Ghadiryanfar, M., Rosentrater, K. A., Keyhani, A., & Omid, M. (2015). A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews, 96(54), 473–481.

    Google Scholar 

  42. Ganguly, A., Chatterjee, P. K., & Dey, A. (2012). Studies on ethanol production from water hyacinth - a review. Renewable and Sustainable Energy Reviews, 16(1), 966–972.

    Article  CAS  Google Scholar 

  43. Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Prog. Energ. Combust., 34(5), 551–573.

    Article  CAS  Google Scholar 

  44. Eggeman, T., & Elander, R. T. (2005). Process and economic analysis of pretreatment technologies. Bioresource Technology, 96(18), 2019–2025.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Koo Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Moses Katongole Kityo and Inyung Sunwoo are co-first author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kityo, M.K., Sunwoo, I., Kim, S.H. et al. Enhanced Bioethanol Fermentation by Sonication Using Three Yeasts Species and Kariba Weed (Salvinia molesta) as Biomass Collected from Lake Victoria, Uganda. Appl Biochem Biotechnol 192, 180–195 (2020). https://doi.org/10.1007/s12010-020-03305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03305-x

Keywords

Navigation