Skip to main content
Log in

Utilization of Amino Acid-Rich Wastes for Microbial Lipid Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To produce microbial lipids for biofuel production, carbohydrates and related compounds from biomass have been routinely utilized, yet amino acids (AA) from protein-rich wastes have been overlooked so far. We use the oleaginous yeast Cryptococcus curvatus ATCC 20509 as a lipid producer and evaluate the capacity for lipid production on proteinogenic AA individually or in designated blends under two-staged culture conditions. It was found that cellular lipid contents reached 48.8%, 44.5% and 29.0% when yeast cells were cultivated in media-contained AA blends with compositional profiles similar to those of sheep viscera, meat industry by-products and fish muscle, respectively, and that lipid coefficients were more than 0.10 g g−1. Furthermore, cellular lipid contents were higher than 20% when most AA were used individually. High lipid coefficients of over 0.23 g g−1 were observed when Pro, Trp or Leu were used as a substrate. Results also indicated that higher initial media pH or reduced phosphate concentration was beneficial for lipid production on AA. This work demonstrated the potential to use AA and related wastes as substrates for microbial lipid production by the yeast C. curvatus, which fit well with the protein-based biorefinery concept. Further efforts should be devoted to recognizing the metabolic features, identifying more robust lipid producer and optimizing lipid production processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

amino acid

ATCC:

American Type Culture Collection Center

YEPD:

yeast extract peptone dextrose

SVAA:

sheep viscera amino acids

FMAA:

fish muscle amino acids

MIAA:

meat industry by-products amino acids

TCA:

trycarboxylic acid

FAME:

fatty acid methyl esters

MES:

2-(N-morpholino)ethanesulfonic acid

Ala:

L-alanine

Ser:

L-serine

Gly:

glycine

Thr:

L-threonine

Cys:

L-cysteine

Asp:

L-aspartic acid

Asn:

DL-asparagine

Gln:

L-glutamine

Glu:

L-glutamate

Pro:

L-proline

His:

L-histidine

Arg:

L-arginine

Phe:

L-phenylalanine

Met:

L-methionine

Val:

L-valine

Leu:

L-leucine

Tyr:

L-tyrosine

Ile:

L-isoleucine

Trp:

L-tryptophan

Lys:

L-lysine

References

  1. Sajid, Z., Khan, F., & Zhang, Y. (2016). Process simulation and life cycle analysis of biodiesel production. Renewable Energy, 85, 945–952.

    Article  CAS  Google Scholar 

  2. Huang, X. F., Shen, Y., Luo, H. J., Liu, J. N., & Liu, J. (2018). Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid. Bioresource Technology, 247, 395–401.

    Article  CAS  Google Scholar 

  3. Wahlen, B. D., Morgan, M. R., Mccurdy, A. T., Willis, R. M., Morgan, M. D., Dye, D. J., Bugbee, B., Wood, B. D., & Seefeldt, L. C. (2013). Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions. Energy and Fuel, 27, 220–228.

    Article  CAS  Google Scholar 

  4. Wu, S., Hu, C., Jin, G., Zhao, X., & Zhao, Z. K. (2010). Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresource Technology, 101, 6124–6129.

    Article  CAS  Google Scholar 

  5. Philip, A. B., & Colin, R. (1979). A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms. Journal of General Microbiology, 114, 361–375.

    Article  Google Scholar 

  6. Papanikolaou, S., & Aggelis, G. (2003). Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Current Microbiology, 46(6), 398–402.

    Article  CAS  Google Scholar 

  7. Gong, Z., Shen, H., Yang, X., Wang, Q., Xie, H., & Zhao, Z. K. (2014). Lipid production from corn stover by the oleaginous yeast Cryptococcus curvatus. Biotechnology for Biofuels, 7, 1–9.

    Article  Google Scholar 

  8. Yang, X., Jin, G., Gong, Z., Shen, H., Bai, F., & Zhao, Z. K. (2014). Recycling biodiesel-derived glycerol by the oleaginous yeast Rhodosporidium toruloides Y4 through the two-stage lipid production process. Biochemical Engineering Journal, 91, 86–91.

    Article  CAS  Google Scholar 

  9. Gong, Z., Zhou, W., Shen, H., Zhao, Z. K., Yang, Z., Yan, J., & Zhao, M. (2016). Co-utilization of corn stover hydrolysates and biodiesel-derived glycerol by Cryptococcus curvatus for lipid production. Bioresource Technology, 219, 552–558.

    Article  CAS  Google Scholar 

  10. Liu, J., Yuan, M., Liu, J. N., & Huang, X. F. (2017). Bioconversion of mixed volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509. Bioresource Technology, 241, 645–651.

    Article  CAS  Google Scholar 

  11. Liao, J. C., Mi, L., Pontrelli, S., & Luo, S. (2016). Fuelling the future: microbial engineering for the production of sustainable biofuels. Nature Reviews. Microbiology, 14, 288.

    Article  CAS  Google Scholar 

  12. Huang, C., Chen, X., Xiong, L., Chen, X., Ma, L., & Chen, Y. (2013). Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances, 31(2), 129–139.

    Article  CAS  Google Scholar 

  13. Li, S. Y., Ng, I. S., Chen, P. T., Chiang, C. J., & Chao, Y. P. (2018). Biorefining of protein waste for production of sustainable fuels and chemicals. Biotechnology for Biofuels, 11, 256.

    Article  CAS  Google Scholar 

  14. De, S. F., Claes, L., Vandekerkhove, A., Verduyckt, J., & De Vos, D. E. (2019). Protein-rich biomass waste as a resource for future biorefineries: state of the art, challenges, and opportunities. ChemSusChem, 12, 1272–1303.

    Article  Google Scholar 

  15. El-dalatony, M. M., Salama, E., Kurade, M. B., Kim, K., Govindwar, S. P., Rae, J., Kim, J. R., Kwon, E. E., Min, B., Jang, M., Oh, S. E., & Chang, S. W. (2019). Whole conversion of microalgal biomass into biofuels through successive high-throughput fermentation. Chemical Engineering Journal, 360, 797–805.

    Article  CAS  Google Scholar 

  16. Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113, 1031–1051.

    Article  CAS  Google Scholar 

  17. Huo, Y. X., Cho, K. M., Rivera, J. G. L., Monte, E., Shen, C. R., Yan, Y., & Liao, J. C. (2011). Conversion of proteins into biofuels by engineering nitrogen flux. Nature Biotechnology, 29(4), 346–351.

    Article  CAS  Google Scholar 

  18. Valta, K., Damala, P., Orli, E., Papadaskalopoulou, C., Moustakas, K., Malamis, D., & Loizidou, M. (2015). Valorisation opportunities related to wastewater and animal by-products exploitation by the Greek slaughtering industry: current status and future potentials. Waste and Biomass Valorization, 6, 927–945.

    Article  CAS  Google Scholar 

  19. Ryder, K., Ha, M., Bekhit, A. E. D., & Carne, A. (2015). Characterisation of novel fungal and bacterial protease preparations and evaluation of their ability to hydrolyse meat myofibrillar and connective tissue proteins. Food Chemistry, 172, 197–206.

    Article  CAS  Google Scholar 

  20. Aristoy, M. C., & Toldra, F. (2011). Essential amino acids. In L. M. L. Nollet & F. Toldra (Eds.), Handbook of analysis of edible animal by-products (pp. 123–135). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  21. Gong, Z., Shen, H., Zhou, W., Wang, Y., Yang, X., & Zhao, Z. K. (2015). Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus. Biotechnology for Biofuels, 8, 189.

    Article  Google Scholar 

  22. Bhaskar, N., Modi, V. K., Govindaraju, K., Radha, C., & Lalitha, R. G. (2007). Utilization of meat industry by products: protein hydrolysate from sheep visceral mass. Bioresource Technology, 98, 388–394.

    Article  CAS  Google Scholar 

  23. Shen, Q., Guo, R., Dai, Z., & Zhang, Y. (2012). Investigation of enzymatic hydrolysis conditions on the properties of protein hydrolysate from fish muscle (Collichthys niveatus) and evaluation of its functional properties. Journal of Agricultural and Food Chemistry, 60, 5192–5198.

    Article  CAS  Google Scholar 

  24. Webster, J. D., Ledward, D. A., & Lawrie, R. A. (1982). Protein hydrolysates from meat industry by-products. Meat Science, 7(2), 147–157.

    Article  CAS  Google Scholar 

  25. Gong, Z., Wang, Q., Shen, H., Wang, L., Xie, H., & Zhao, Z. K. (2014). Conversion of biomass-derived oligosaccharides into lipids. Biotechnology for Biofuels, 7, 1–10.

    Article  Google Scholar 

  26. Li, Y., Zhao, Z. K., & Bai, F. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41, 312–317.

    Article  Google Scholar 

  27. Johnson, C. L., & Vishniac, W. (1970). Growth inhibition in Thiobacillus neapolitanus by histidine, methionine, phenylalanine, and threonine. Journal of Bacteriology, 104(3), 1145–1150.

    Article  CAS  Google Scholar 

  28. Bailey, R. B., & Parks, L. W. (1972). Response of the intracellular adenosine triphosphate pool of Saccharomyces cerevisiae to growth inhibition induced by excess L-methionine. Journal of Bacteriology, 111(2), 542–546.

    Article  CAS  Google Scholar 

  29. Ruiz, S. J., van Klooster, J. S., Bianchi, F., & Poolman, B. (2017). Growth inhibition by amino acids in Saccharomyces cerevisiae. bioRxiv, 222224.

  30. Mansour, S., Beckerich, J. M., & Bonnarme, P. (2008). Lactate and amino acid catabolism in the cheese-ripening yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 74(21), 6505–6512.

    Article  CAS  Google Scholar 

  31. Shen, X., Zhang, M., Bhandari, B., & Gao, Z. (2019). Novel technologies in utilization of byproducts of animal food processing: a review. Critical Reviews in Food Science and Nutrition, 59(21), 3420–3430.

    Article  Google Scholar 

  32. Fei, Q., Chang, H. N., Shang, L., & Choi, J. D. R. (2011). Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnology and Bioprocess Engineering, 16, 482–487.

    Article  CAS  Google Scholar 

  33. Casal, M., Paiva, S., Queiros, O., & Soares-Silva, I. (2008). Transport of carboxylic acids in yeasts. FEMS Microbiology Reviews, 32(6), 974–994.

    Article  CAS  Google Scholar 

  34. Zheng, Y., Chi, Z., Ahring, B. K., & Chen, S. (2012). Oleaginous yeast Cryptococcus curvatus for biofuel production: ammonia’s effect. Biomass and Bioenergy, 37, 114–121.

    Article  CAS  Google Scholar 

  35. Chi, Z., Zheng, Y., Ma, J., & Chen, S. (2011). Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production. International Journal of Hydrogen Energy, 36, 9542–9550.

    Article  CAS  Google Scholar 

  36. Wang, Y., Zhang, S., Zhu, Z., Shen, H., Lin, X., Jin, X., et al. (2018). Systems analysis of phosphate-limitation-induced lipid accumulation by the oleaginous yeast Rhodosporidium toruloides. Biotechnology for Biofuels, 11, 148.

    Article  Google Scholar 

  37. Owen, O. E., Kalhan, S. C., & Hanson, R. W. (2002). The key role of anaplerosis and cataplerosis for citric acid cycle function. The Journal of Biological Chemistry, 277, 30409–30412.

    Article  CAS  Google Scholar 

  38. Kumar, A., John, L., Alam, M. M., Gupta, A., Sharma, G., Pillai, B., & Sengupta, S. (2006). Homocysteine and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast. The Biochemical Journal, 396(1), 61–69.

    Article  CAS  Google Scholar 

  39. Oguri, T., Schneider, B., & Reitzer, L. (2012). Cysteine catabolism and cysteine desulfhydrase (CdsH/STM0458) in Salmonella enterica serovar typhimurium. Journal of Bacteriology, 194, 4366–4376.

    Article  CAS  Google Scholar 

  40. Lian, J., Garcia-Perez, M., Coates, R., Wu, H., & Chen, S. (2012). Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresource Technology, 118, 177–186.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiaobin Yang and Mr. Xiaozan Dai for helpful discussions.

Availability of Supporting Data

Additional files 1–4 contain supporting data.

Funding

This work was financially supported by National Natural Science Foundation of China (Nos. 51761145014 and 21721004).

Author information

Authors and Affiliations

Authors

Contributions

ZKZ and RK conceived the project and designed the experiments. RK, HS, QL and XY performed the experiments. WQ and RK did ion chromatography analysis. RK and ZKZ wrote and revised the manuscript. All authors discussed the results and commented on the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zongbao Kent Zhao.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All the authors agreed for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, R., Shen, H., Li, Q. et al. Utilization of Amino Acid-Rich Wastes for Microbial Lipid Production. Appl Biochem Biotechnol 191, 1594–1604 (2020). https://doi.org/10.1007/s12010-020-03296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03296-9

Keywords

Navigation