Skip to main content
Log in

Acclimation Improves Methane Production from Molasses Wastewater with High Salinity in an Upflow Anaerobic Filter Reactor: Performance and Microbial Community Dynamics

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study evaluated the performance of an upflow anaerobic filter (UAF) reactor in the thermophilic methane fermentation of hypersaline molasses wastewater. The high salinity (~ 45 mS/cm) of the undiluted wastewater completely inhibited the biogas production. An acclimation strategy involving gradient dilution of the molasses wastewater was implemented to gradually increase the salt stress. Consequently, the biogas production was recovered, inhibited only slightly by the high salinity of the undiluted wastewater. The reactor steadily achieved a high total organic carbon (TOC) loading rate of 5 g/L/day, with approximately 60% TOC removal efficiency. Acclimation to the gradually increased salt stress leads to a relative abundance of some halotolerant microbes, such as bacteria from Arcobacter, Tissierella, and Ruminococcaceae, which increased as their hydrolytic and acidogenic abilities adjusted to the incremental increase in salinity. Additionally, hydrogenotrophic methanogens, especially Methanoculleus, showed greater resistance to hypersalinity than aceticlastic methanogens. These results suggest that acclimation of the fermentation microbial community to hypersalinity is an effective strategy to improve methane production from hypersaline molasses wastewater in thermophilic UAF reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Christofoletti, C. A., Escher, J. P., Correia, J. E., Marinho, J. F. U., & Fontanetti, C. S. (2013). Sugarcane vinasse: environmental implications of its use. Waste Management, 33, 2752–2761.

    CAS  PubMed  Google Scholar 

  2. Dziugan, P., Balcerek, M., Pielech-Przybylska, K., & Patelski, P. (2013). Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production. Biotechnology for Biofuels, 6, 158.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ryan, D., Gadd, A., Kavanagh, J., & Barton, G. W. (2009). Integrated biorefinery wastewater design. Chemical Engineering Research and Design, 87, 1261–1268.

    CAS  Google Scholar 

  4. Yan, X., Bilada, M. R., Gerards, R., Vriens, L., Piasecka, A., & Vankelecom, I. F. J. (2012). Comparison of MBR performance and membrane cleaning in a single-stage activated sludge system and a two-stage anaerobic/aerobic (A/A) system for treating synthetic molasses wastewater. Journal of Membrane Science, 394–395, 49–56.

    Google Scholar 

  5. Boopathy, R., & Tilche, A. (1991). Anaerobic digestion of high strength molasses wastewater using hybrid anaerobic baffled reactor. Water Research, 25, 785–790.

    CAS  Google Scholar 

  6. Onodera, T., Sase, S., Choeisai, P., Yoochatchaval, W., Sumino, H., Yamaguchi, T., Ebie, Y., Xu, K. Q., Tomioka, N., Mizuochi, M., & Syutsubo, K. (2013). Development of a treatment system for molasses wastewater: the effects of cation inhibition on the anaerobic degradation process. Bioresource Technology, 131, 295–320.

    CAS  PubMed  Google Scholar 

  7. Wilkie, A. C., Riedesel, K. J., & Owens, J. M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy, 19, 63–102.

    CAS  Google Scholar 

  8. Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A., & Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22(9), 477–485.

    CAS  PubMed  Google Scholar 

  9. De Vrieze, J., Coma, M., Debeuckelaere, M., Van der Meeren, P., & Rabaey, K. (2016a). High salinity in molasses wastewaters shifts anaerobic digestion to carboxylate production. Water Research, 98, 293–301.

    PubMed  Google Scholar 

  10. De Vrieze, J., Devooght, A., Walraedt, D., & Boon, N. (2016b). Enrichment of Methanosaetaceae on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream. Applied Microbiology and Biotechnology, 100(11), 5177–5187.

    PubMed  Google Scholar 

  11. Kuroda, K., Chosei, T., Nakahara, N., Hatamoto, M., Wakabayashi, T., Kawai, T., Araki, N., Syutsubo, K., & Yamaguchi, T. (2015). High organic loading treatment for industrial molasses wastewater and microbial community shifts corresponding to system development. Bioresource Technology, 196, 225–234.

    CAS  PubMed  Google Scholar 

  12. Yun, J., Lee, S. D., & Cho, K. S. (2016). Biomethane production and microbial community response according to influent concentration of molasses wastewater in a UASB reactor. Applied Microbiology and Biotechnology, 100, 4675–4683.

    CAS  PubMed  Google Scholar 

  13. De Vrieze, J., Plovie, K., Verstraete, W., & Boon, N. (2015). Co-digestion of molasses or kitchen waste with high-rate activated sludge results in a diverse microbial community with stable methane production. Journal of Environmental Management, 152, 75–82.

    PubMed  Google Scholar 

  14. Fang, C., Boe, K., & Angelidaki, I. (2011). Anaerobic co-digestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition. Bioresource Technology, 102, 1005–1011.

    CAS  PubMed  Google Scholar 

  15. Bilad, M. R., Declerck, P., Piasecka, A., Vanysacker, L., Yan, X., & Vankelecom, I. F. J. (2011). Treatment of molasses wastewater in a membrane bioreactor: influence of membrane pore size. Separation and Purification Technology, 78, 105–112.

    CAS  Google Scholar 

  16. Syutsubo, K., Onodera, T., Choeisai, P., Khodphuvieng, J., Prammanee, P., Yoochatchaval, W., Kaewpradit, W., & Kubota, K. (2013). Development of appropriate technology for treatment of molasses-based wastewater. Journal of Environmental Science and Health, Part A, 48, 1114–1121.

    CAS  Google Scholar 

  17. Calli, B., Mertoglu, B., Roest, K., & Inanc, B. (2006). Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate. Bioresource Technology, 97, 641–647.

    CAS  PubMed  Google Scholar 

  18. Tang, Y. Q., Fujimura, Y., Shigematsu, T., Morimura, S., & Kida, K. (2007). Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater. Journal of Bioscience and Bioengineering, 104(4), 281–287.

    CAS  PubMed  Google Scholar 

  19. Sasaki, K., Morita, M., Hirano, S., Ohmura, N., & Igarashi, Y. (2011). Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles. Applied Microbiology and Biotechnology, 90(4), 1555–1561.

    CAS  PubMed  Google Scholar 

  20. Sun, Z. Y., Tang, Y. Q., Morimura, S., & Kida, K. (2013). Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol. Bioresource Technology, 128, 87–93.

    CAS  PubMed  Google Scholar 

  21. Appels, L., Van, A. A., Willems, K., Degrève, J., Van, I. J., & Dewil, R. (2011). Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresource Technology, 102(5), 4124–4130.

    CAS  PubMed  Google Scholar 

  22. Sun, Z. Y., Yamaji, S., Cheng, Q. S., Yang, L., Tang, Y. Q., & Kida, K. (2014). Simultaneous decrease in ammonia and hydrogen sulfide inhibition during the thermophilic anaerobic digestion of protein-rich stillage by biogas recirculation and air supply at 60 °C. Process Biochemistry, 49, 2214–2219.

    CAS  Google Scholar 

  23. Shigematsu, T., Tang, Y., Kawaguchi, H., Ninomiya, K., Kijima, J., Kobayashi, T., Morimura, S., & Kida, K. (2003). Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. Journal of Bioscience and Bioengineering, 96(6), 547–558.

    CAS  PubMed  Google Scholar 

  24. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics., 30(15), 2114–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fouhy, F., Deane, J., Rea, M. C., O'Sullivan, Ó., Ross, R. P., O'Callaghan, G., Plant, B. J., & Stanton, C. (2015). The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS One, 10, e0119355.

    PubMed  PubMed Central  Google Scholar 

  26. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., & Costello, E. K. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Takaki, M., Tan, L., Murakami, T., Tang, Y. Q., Sun, Z. Y., Morimura, S., & Kida, K. (2014). Production of biofuels from sweet sorghum juice via ethanol-methane two-stage fermentation. Industrial Crops and Products, 63, 329–336.

    Google Scholar 

  28. Tanemura, K., Kida, K., Ikbal, & Sonoda, Y. (1994). Anaerobic treatment of wastewater with high salt content from a pickled-plum manufacturing process. Journal of Fermentation and Bioengineering, 77, 188–193.

    CAS  Google Scholar 

  29. Vandamme, P., Vancanneyt, M., Pot, B., Mels, L., Hoste, B., Dewettinck, D., Vlaes, L., van den Borre, C., Higgins, R., & Hommez, J. (1992). Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. International Journal of Systematic Bacteriology, 42(3), 344–356.

    CAS  PubMed  Google Scholar 

  30. Wang, W., Wang, S., Ren, X., Hu, Z., & Yuan, S. (2017). Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor. Environmental Science and Pollution Research, 24(33), 26125–26135.

    CAS  PubMed  Google Scholar 

  31. Snell-Castro, R., Godon, J. J., Delgenès, J. P., & Dabert, P. (2005). Characterisation of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis. FEMS Microbiology Ecology, 52, 229–242.

    CAS  PubMed  Google Scholar 

  32. Nolla-Ardèvol, V., Peces, M., Strous, M., & Tegetmeyer, H. E. (2015). Metagenome from a Spirulina digesting biogas reactor: analysis via binning of contigs and classification of short reads. BMC Microbiology, 15, 277.

    PubMed  PubMed Central  Google Scholar 

  33. Broeker, J., Mechelke, M., Baudrexl, M., Mennerich, D., Hornburg, D., Mann, M., & Zverlov, V. V. (2018). The hemicellulose-degrading enzyme system of the thermophilic bacterium Clostridium stercorarium: comparative characterisation and addition of new hemicellulolytic glycoside hydrolases. Biotechnology for Biofuels, 11, 229.

    PubMed  PubMed Central  Google Scholar 

  34. Xia, Y., Chin, F. Y. L., Chao, Y. Q., & Zhang, T. (2015). Phylogeny-structured carbohydrate metabolism across microbiomes collected from different units in wastewater treatment process. Biotechnology for Biofuels, 8, 12.

    Google Scholar 

  35. Werner, J. J., Garcia, M. L., Perkins, S. D., Yarasheski, K. E., Smith, S. R., Muegge, B. D., Stadermann, F. J., DeRito, C. M., Floss, C., Madsen, E. L., Gordon, J. I., & Angenent, L. T. (2014). Microbial community dynamics and stability during an ammoniainduced shift to syntrophic acetate oxidation. Applied and Environmental Microbiology, 80(11), 3375–3383.

    PubMed  PubMed Central  Google Scholar 

  36. De Vrieze, J., Christiaens, M. E., Walraedt, D., Devooght, A., Ijaz, U. Z., & Boon, N. (2017). Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. Water Research, 111, 109–117.

    PubMed  Google Scholar 

  37. Nüsslein, B., Chin, K. J., Eckert, W., & Conrad, R. (2001). Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environmental Microbiology, 3(7), 460–470.

    PubMed  Google Scholar 

  38. Zhang, F., Zhang, Y., Ding, J., Dai, K., van Loosdrecht, M. C., & Zeng, R. J. (2014). Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens. Scientific Reports, 24, 5268.

    Google Scholar 

  39. Hao, L. P., Lu, F., Li, L., Wu, Q., Shao, L. M., & He, P. J. (2013). Self-adaption of methaneproducing communities to pH disturbance at different acetate concentrations by shifting pathways and population interaction. Bioresource Technology, 140, 319–327.

    CAS  PubMed  Google Scholar 

  40. Leite, A. F., Janke, L., Lv, Z. P., Harms, H., Richnow, H. H., & Nikolausz, M. (2015). Improved monitoring of semi-continuous anaerobic digestion of sugarcane waste: effects of increasing organic loading rate on methanogenic community dynamics. International Journal of Molecular Sciences, 16(10), 23210–23226.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Munk, B., Bauer, C., Gronauer, A., & Lebuhn, M. (2010). Population dynamics of methanogens during acidification of biogas fermenters fed with maize silage. Engineering in Life Sciences, 10, 496–508.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Program for International S&T Cooperation Projects of China (2016YFE0127700), the National Science Foundation of China (51808361, 41701295), the China Postdoctoral Science Foundation (2018 M643480, 2018M640936), and Sichuan Science and Technology Program (2018JY0536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Yong Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A publication record was provided as follows:

Yu N., Tan L., Sun Z.Y., Tang Y.Q., Kida K. Production of bio-ethanol by integrating microwave-assisted dilute sulfuric acid pretreated sugarcane bagasse slurry with molasses. Applied Biochemistry and Biotechnology, 2018, 185(1), 191–206.

Electronic Supplementary Material

ESM 1

(DOC 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YT., Yu, N., Sun, ZY. et al. Acclimation Improves Methane Production from Molasses Wastewater with High Salinity in an Upflow Anaerobic Filter Reactor: Performance and Microbial Community Dynamics. Appl Biochem Biotechnol 191, 397–411 (2020). https://doi.org/10.1007/s12010-020-03236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03236-7

Keywords

Navigation