Skip to main content
Log in

Natural Product Glycosylation: Biocatalytic Synthesis of Quercetin-3,4′-O-diglucoside

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Flavonoids have gained much attention for their proposed positive effects for human health. Glycosylation is a significant method for the structural modification of various flavanols, resulting in glycosides with increased solubility, stability, and bioavailability compared with the corresponding aglycone. Natural product glycosylation by using enzymes has emerged as a topic of interest as it offers a sustainable and economical alternative source so as to address supply scalability limitations associated with plant-based production. Quercetin-3,4′-O-diglucoside, as one of the major but trace bioactive flavonoids in onion (Allium cepa), is superior or at least equal to quercetin aglycone in its bioavailability. In the present study, the onion-derived enzyme, UGT73G1, coupled with sucrose synthase, StSUS1, from Solanum tuberosum formed a circulatory system to produce quercetin-3,4′-O-diglucoside from quercetin, which preferred sucrose as a sugar donor and quercetin as a sugar acceptor. The optimal conditions were determined in order to increase the production of quercetin-3,4′-O-diglucoside. The maximum concentration of quercetin-3,4′-O-diglucoside achieved in a 10-mL reaction was 427.11 mg/L, from the conversion of 1 g/L of quercetin for 16 h at 40 °C and pH 7.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dixon, R. A., & Steele, C. L. (1999). Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends in Plant Science, 4(10), 394–400.

    Article  CAS  Google Scholar 

  2. Halliwell, B., Rafter, J., & Jenner, A. (2005). Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? The American Journal of Clinical Nutrition, 81(1), 268S–276S.

    Article  CAS  Google Scholar 

  3. Nicolle, E., Souard, F., Faure, P., & Boumendjel, A. (2011). Flavonoids as promising lead compounds in type 2 diabetes mellitus: molecules of interest and structure–activity relationship. Current Medicinal Chemistry, 18(17), 2661–2672.

    Article  CAS  Google Scholar 

  4. Jeong, J., An, J. Y., Kwon, Y. T., Rhee, J. G., & Lee, Y. J. (2009). Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. Journal of Cellular Biochemistry, 106(1), 73–82.

    Article  CAS  Google Scholar 

  5. Luo, H., Jiang, B., King, S. M., & Chen, Y. C. (2008). Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutrition and Cancer, 60(6), 800–809.

    Article  CAS  Google Scholar 

  6. Choi, E. J., Bae, S. M., & Ahn, W. S. (2008). Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Archives of Pharmacal Research, 31(10), 1281–1285.

    Article  CAS  Google Scholar 

  7. Zielinska, M., Gülden, M., & Seibert, H. (2003). Effects of quercetin and quercetin-3-O-glycosides on oxidative damage in rat C6 glioma cells. Environmental Toxicology and Chemistry, 13, 47–53.

    CAS  Google Scholar 

  8. Kim, Y., Narayanan, S., & Chang, K. O. (2010). Inhibition of influenza virus replication by plant-derived isoquercitrin. Antiviral Research, 88(2), 227–235.

    Article  CAS  Google Scholar 

  9. Liang, D., Liu, J., Wu, H., Wang, B., Zhu, H., & Qiao, J. (2015). Glycosyltransferases: mechanisms and applications in natural product development. Chemical Society Reviews, 44(22), 8350–8374.

    Article  CAS  Google Scholar 

  10. Ramos, S. (2007). Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. The Journal of Nutritional Biochemistry, 18(7), 427–442.

    Article  CAS  Google Scholar 

  11. Makino, T., Kanemaru, M., Okuyama, S., Shimizu, R., Tanaka, H., & Mizukami, H. (2013). Anti-allergic effects of enzymatically modified isoquercitrin (α-oligoglucosyl quercetin 3-O-glucoside), quercetin 3-O-glucoside, α-oligoglucosyl rutin, and quercetin, when administered orally to mice. Chinese Journal of Natural Medicines, 61, 881–886.

    Article  Google Scholar 

  12. Nile, S. H., Nile, A. S., Keum, Y. S., & Sharma, K. (2017). Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chemistry, 235, 119–126.

    Article  CAS  Google Scholar 

  13. Kashion, Y., Murota, K., Matsuda, N., Tomotake, M., Hamano, T., Mukai, R., & Terao, J. (2015). Effect of processed onions on the plasma concentration of quercetin in rats and humans. Journal of Food Science, 80(11), H2597–H2602.

    Article  Google Scholar 

  14. Beesk, N., Perner, H. S., Dietmar, G., Eckhard, K., Lothar, W., & Sascha, R. (2010). Distribution of quercetin-3,4’-O-diglucoside, quercetin-4’-O-monoglucoside, and quercetin in different parts of the onion bulb (Allium cepa L.) influenced by genotype. Food Chemistry, 122(3), 566–571.

  15. Kramer, C. M., Prata, R. T., Willits, M. G., Luca, D. V., Steffens, J. C., & Graser, G. (2003). Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry, 64(6), 1069–1076.

  16. Xiao, J. B., Muzashvili, T. S., & Georgiev, M. I. (2014). Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnology Advances, 32(6), 1145–1156.

    Article  CAS  Google Scholar 

  17. Schmölzer, K., Gutmann, A., Diricks, M., Desmet, T., & Nidetzky, B. (2016). Sucrose synthase: a unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnology Advances, 34(2), 88–111.

    Article  Google Scholar 

  18. Elling, L., Rupprath, C., Gunther, N., Römer, U., Verseck, S., Weingarten, P., Gerald, D., & Andreas, K. (2005). An enzyme module system for the synthesis of dTDP-activated deoxysugars from dTMP and sucrose. Chem Bio Chem, 6(8), 1423–1430.

    Article  CAS  Google Scholar 

  19. Masada, S., Kawase, Y., Nagatoshi, M., Qguchi, Y., Terasaka, K., & Mizukami, H. (2007). An efficient chemoenzymatic production of small molecule glucosides with in situ UDP-glucose recycling. FEBS Letters, 581(13), 2562–2566.

    Article  CAS  Google Scholar 

  20. Bungaruang, L., Gutmann, A., & Nidetzky, B. (2013). Leloir glycosyltransferases and natural product glycosylation: biocatalytic synthesis of the C-glucoside nothofagin, a major antioxidant of red bush herbal tea. Advanced Synthesis and Catalysis, 355(14-15), 2757–2763.

    Article  CAS  Google Scholar 

  21. Cai, R., Chen, C., Li, Y., Sun, K., Zhou, F., Chen, K., & Jia, H. (2017). Improved soluble bacterial expression and properties of the recombinant flavonoid glucosyltransferase UGT73G1 from Allium cepa. Journal of Biotechnology, 255, 9–15.

  22. He, X. Z., Li, W. S., & Blount, J. W. (2008). Regioselective synthesis of plant (iso) flavone glycosides in Escherichia coli. Applied Microbiology and Biotechnology, 80(2), 253–260.

    Article  CAS  Google Scholar 

  23. Kim, J. H., Shin, K. H., & Ko, J. H. (2006). Glucosylation of flavonols by Escherichia coli expressing glucosyltransferase from rice (Oryza sativa). Journal of Bioscience and Bioengineering, 102(2), 135–137.

    Article  CAS  Google Scholar 

  24. Sauerzapfe, B., Engels, L., & Elling, L. (2008). Broadening the biocatalytic properties of recombinant sucrose synthase 1 from potato (Solanum tuberosum L.) by expression in Escherichia coli and Saccharomyces cerevisiae. Enzyme Microb Tech, 43(3), 289–296.

  25. Chen, L., Sun, P., Zhou, F., Li, Y., Chen, K., Jia, H., Yan, M., Gong, D., & Ouyang, P. (2018). Synthesis of rebaudioside D, using glycosyltransferase UGTSL2 and in situ UDP-glucose regeneration. Food Chemistry, 259, 286–291.

    Article  CAS  Google Scholar 

  26. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Biochemistry, 31(3), 426–428.

    CAS  Google Scholar 

  27. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(s1–2), 248–254.

    Article  CAS  Google Scholar 

  28. Ni, J., Gao, Y., Tao, F., Liu, H., & Xu, P. (2018). Temperature-directed biocatalysis for the sustainable production of aromatic aldehydes or alcohols. Angew Chem Int Edit, 57(5), 1214–1217.

    Article  CAS  Google Scholar 

  29. Bedford, C. T., Hickman, A. D., & Logan, C. J. (2003). Structure-activity studies of glucose transfer: determination of the spontaneous rates of hydrolysis of uridine 5′-diphospho-α-D-glucose (UDPG) and uridine 5′-diphospho-α-D-glucuronic acid (UDPGA). Bioorgan Med Chem, 11(10), 2339–2345.

    Article  CAS  Google Scholar 

  30. Wang, Y., Chen, L., Li, Y., Li, Y., Yan, M., Chen, K., Hao, N., & Xu, L. (2016). Efficient enzymatic production of rebaudioside A from stevioside. Bioscience Biotechnology and Biochemistry, 80(1), 67–73.

    Article  CAS  Google Scholar 

  31. Weiz, G., Braun, L., Lopez, R., DeMaría, P. D., & Breccia, J. D. (2016). Enzymatic deglycosylation of flavonoids in deep eutectic solvents-aqueous mixtures: paving the way for sustainable flavonoid chemistry. J Mol Catal B-Enzym, 130, 70–73.

    Article  CAS  Google Scholar 

  32. Mazzaferro, L. S., Piñuel, L., Erra-Balsells, R., Giudicessi, S. L., & Breccia, J. D. (2012). Transglycosylation specificity of Acremonium sp. α-rhamnosyl-β-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferyl-rutinoside. Carbohydrate Research, 347(1), 69–75.

    Article  CAS  Google Scholar 

  33. Lim, E. K., Ashford, D. A., Hou, B., Jackson, R. G., & Bowles, D. J. (2004). Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnology and Bioengineering, 87(5), 623–631.

    Article  CAS  Google Scholar 

  34. Lombard, K. A., Geoffriau, E., & Peffley, E. (2002). Flavonoid quantification in onion by spectrophotometric and high performance liquid chromatography analysis. HortScience, 37(4), 682–668.

    Article  CAS  Google Scholar 

  35. Weignerova, L., Marhol, P., Gerstorferova, D., & Kren, V. (2012). Preparatory production of quercetin-3-beta-D-glucopyranoside using alkali-tolerant thermostable alpha-L-rhamnosidase from Aspergillus terreus. Bioresource Technology, 115, 222–227.

    Article  CAS  Google Scholar 

  36. Zhang, R., Zhang, B. L., Xie, T., Li, G. C., Tuo, Y., & Xiang, Y. T. (2015). Biotransformation of rutin to isoquercitrin using recombinant rhamnosidase from Bifidobacterium breve. Biotechnology Letters, 37(6), 1257–1264.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially funded by the NSFC (21878155), PAPD, Qing Lan Project of Jiangsu Universities, Six Talent Peaks Project in Jiangsu Province, and Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture.

Author information

Authors and Affiliations

Authors

Contributions

RC, PS, and YL conceived and designed the study. RC, PS, and LC performed the experiments and analyzed the data. PS and RC wrote the paper. YL, HJ, KC, and MY reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yan Li.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ping Sun and Ruxin Cai are contributed to the work equally and should be regarded as co-first authors.

Electronic Supplementary Material

ESM 1

(DOC 228 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Cai, R., Chen, L. et al. Natural Product Glycosylation: Biocatalytic Synthesis of Quercetin-3,4′-O-diglucoside. Appl Biochem Biotechnol 190, 464–474 (2020). https://doi.org/10.1007/s12010-019-03103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03103-0

Keywords

Navigation