Skip to main content
Log in

Processivity and the Mechanisms of Processive Endoglucanases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulases, as environmentally appropriate catalysts specifically acting on cellulosic substrates, are important for the industrial conversion of lignocellulose and modification of cellulose products. After decades of research, a fundamental understanding of cellulase-mediated hydrolysis of cellulose is that its ability to processively act as a key for the complete enzymatic hydrolysis of natural crystalline cellulose. Two types of processive cellulases are known: exoglucanases and processive endoglucanases. Exoglucanases are typical processive enzymes, and they have been studied in detail so that their modes of action and mechanisms are reasonably well characterized. Conversely, endoglucanases are less well characterized because of the non-universality and structural diversity. However, processive endoglucanases have certain characteristics that exoglucanases lack such as hydrolysis product diversity and independent hydrolyze natural crystalline cellulose. Therefore, besides the conversion of cellulose to monosaccharide, they might be useful for modification of fibrous substrates and preparation of cellulose oligosaccharides. Herein, we review in detail the sources, hydrolysis products, application, and possible hydrolysis mechanisms of processive endoglucanases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kargarzadeh, H., Mariano, M., Gopakumar, D., Ishak, A., Thomas, S., Dufresne, A., Huang, J., & Lin, N. (2018). Advances in cellulose nanomaterial. Cellulose, 25(4), 2151–2189.

    CAS  Google Scholar 

  2. Charreau, H., Foresti, M. L., & Vazquez, A. (2013). Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Patents on Nanotechnology, 7(1), 56–80.

    CAS  PubMed  Google Scholar 

  3. Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5), 355–383.

    CAS  PubMed  Google Scholar 

  4. Anoop, K. V., Suresh, C. K. R., Snishamol, C., & Nagendra, P. G. (2019). Role of cellulases in food, feed, and beverage industries. In Green bio-processes. energy, environment, and sustainability. Singapore: Springer.

    Google Scholar 

  5. Bauer, F., Coenen, L., Hansen, T., McCormick, K., & Palgan, Y. V. (2017). Technological innovation systems for biorefineries: a review of the literature. Biofuels, Bioproducts and Biorefining, 11(3), 534–548.

    CAS  Google Scholar 

  6. Menon, V., & Rao, M. (2012). Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefnery concept. Progress in Energy and Combustion Science, 38(4), 522–550.

    CAS  Google Scholar 

  7. Obeng, E. M., Adam, S. N. N., Budiman, C., Ongkudon, C. M., Maas, R., & Joachim, J. (2017). Lignocellulases: a review of emerging and developing enzymes, systems, and practices, Bioresour. Bioprocess, 4, 16.

    Google Scholar 

  8. Hippel, V. P. H. (1994). Protein-DNA recognition: new perspectives and underlying themes. Science, 263(5148), 769–770.

    Google Scholar 

  9. Kipper, K., Väljamäe, P., & Johansson, G. (2005). Processive action of cellobiohydrolase Cel7A from Trichoderma reesei isrevealed as ‘burst’ kinetics on fluorescent polymeric model substrates. Biochem, 385(Pt2), 527–535.

    CAS  Google Scholar 

  10. Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J. K., & Jones, T. A. (1990). Three dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science, 249(4967), 380–386.

    CAS  PubMed  Google Scholar 

  11. Karnaouri, A., Madhu, N. M., Dimarogona, M., Topakas, E., Rova, U., Sandgren, M., & Christakopoulos, P. (2017). Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates. Biotechnology for Biofuels, 10(1), 126–143.

    PubMed  PubMed Central  Google Scholar 

  12. Asha, P., Jose, D., & Singh, B. I. S. (2016). Purification and characterisation of processive-type endoglucanase and β-glucosidase from Aspergillus ochraceus MTCC 1810 through saccharification of delignified coir pith to glucose. Bioresource Technology, 213, 245–248.

    CAS  PubMed  Google Scholar 

  13. Chiriac, A. I., Pastor, F. I. J., Popa, V. I., Aflori, M., & Ciolacu, D. (2014). Changes of supramolecular cellulose structure and accessibility induced by the processive endoglucanase Cel9B from Paenibacillus barcinonensis. Cellulose, 21(1), 203–219.

    CAS  Google Scholar 

  14. Zhang, C., Wang, Y., Li, Z., Zhou, X., Zhang, W., Zhao, Y., & Lu, X. (2014). Characterization of a multi-function processive endoglucanase CHU_2103 from Cytophaga hutchinsonii. Applied Microbiology and Biotechnology, 98(15), 6679–6687.

    CAS  PubMed  Google Scholar 

  15. Zhang K, Li W, Wang Y, Zheng Y, Tan Fang, Ma Xiao-Qing, Yao Li-Shan, Bayer E A, Wang L and Li Fu, Processive degradation of crystalline cellulose by a multimodular endoglucanase via a wirewalking mode. Biomacromolecules 19(5):1686–1696(2018).

    CAS  PubMed  Google Scholar 

  16. Taylor, L. E., Henrissat, B., Coutinho, P. M., Ekborg, N. A., Hutcheson, S. W., & Weiner, R. A. (2006). Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. Journal of Bacteriology, 188(11), 3849–3861.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, B., Zheng, S., Pedroso, M. M., Guddat, L. W., Chang, S., He, B., & Schenk, G. (2018). Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS-5 with potential applications in the saccharification of cellulosic substrates. Biotechnology for Biofuels, 11(1), 20–34.

    PubMed  PubMed Central  Google Scholar 

  18. Cohen, R., Suzuki, M. R., & Hammel, K. E. (2005). Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Applied and Environmental Microbiology, 71(5), 2412–2417.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, H. M., Lee, Y. G., Patel, D. H., Lee, K. H., Lee, D. S., & Bae, H. J. (2012). Characteristics of bifunctional acidic endoglucanase (Cel5B) from Gloeophyllum trabeum. Journal of Industrial Microbiology & Biotechnology, 39(7), 1081–1089.

    CAS  Google Scholar 

  20. Zheng, F., & Ding, S. (2013). processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Applied and Environmental Microbiology, 79(3), 989–996.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Reverbel-Leroy, C., Pages, S., Belaich, A., Belaich, J. P., & Tardif, C. (1997). The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. Journal of Bacteriology, 179(1), 46–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bronnenmeier, K., & Staudenbauer, L. W. (1990). Cellulose hydrolysis by a highly thermostable endo-1, 4-β-glucanase (Avicelase I) from Clostridium stercorarium. Enzyme and Microbial Technology, 12(6), 431–436.

    CAS  Google Scholar 

  23. Irwin, D. C., Spezio, M., Walker, L. P., & Wilson, D. B. (1993). Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects. Biotechnology and Bioengineering, 42(8), 1002–1013.

    CAS  PubMed  Google Scholar 

  24. Gal, L., Gaudin, C., Belaich, A., Pages, S., Tardif, C., & Belaich, J. P. (1997). CelG from Clostridium cellulolyticum: A multidomain endoglucanase acting Efficiently on crystalline cellulose. Journal of Bacteriology, 179(21), 6595–6601.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeon, S. D., Yu, K. O., Kim, S. W., & Han, S. O. (2012). The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans. New Biotechnology, 29(3), 366–372.

    Google Scholar 

  26. Zverlov, V. V., Schantz, N., & Schwarz, W. H. (2005). A major new component in the cellulosome of Clostridium thermocellum is a processive endo-β −1,4-glucanase producing cellotetraose. FEMS Microbiology Letters, 249(2), 353–358.

    CAS  PubMed  Google Scholar 

  27. Ko, K. C., Han, Y., Choi, J. H., Geun-Joong, K., Seung-Goo, L., & Song, J. J. (2011). A novel bifunctional endo-/exo-type cellulose from an anaerobic ruminal bacterium. Applied Microbiology and Biotechnology, 89(5), 1453–1462.

    CAS  PubMed  Google Scholar 

  28. Eriksson, K. E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood and wood components. Berlin: Springer-Verlag.

    Google Scholar 

  29. Mejia-Castillo, T., Hidalgo-Lara, M. E., Brieba, L. G., & Ortega-Lopez, J. (2008). Purification, characterization and modular organization of a cellulose-binding protein, CBP105, a processive β-1,4-endoglucanase from Cellulomonas flavigena. Biotechnology Letters, 30(4), 681–687.

    CAS  PubMed  Google Scholar 

  30. Irwin, D. C., Shin, D. H., Zhang, S., Barr, B. K., Sakon, J., Karplus, P. A., & Wilson, D. B. (1998). Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. Journal of Bacteriology, 180(7), 1709–1714.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chiriac, A. I., Cadena, E. M., Vidal, T., Torres, A. L., Diaz, P., & Pastor, F. I. (2010). Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture. Applied Microbiology and Biotechnology, 86(4), 1125–1134.

    CAS  PubMed  Google Scholar 

  32. Weiner, R. M., Taylor, L. E., Henrissat, B., Hauser, L., Land, M., Coutinho, P. M., Rancurel, C., Saunders, E. H., Longmire, A. G., Zhang, H. T., Bayer, E. A., Gilbert, H. J., Larimer, F., Zhulin, I. B., Ekborg, N. A., Lamed, R., Richardson, P. M., Borovok, I., & Hutcheson, S. (2008). Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2–40(T). PLoS Genetics, 4(5), e100087.

    Google Scholar 

  33. Watson, B. J., Zhang, H., Longmire, A. G., Moon, Y. H., & Hutcheson, S. W. (2009). Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. Journal of Bacteriology, 191(18), 5697–5705.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghatge, S. S., Telke, A. A., Kang, S. H., Arulalapperumal, V., Keun-Woo, L., Govindwar, S. P., Um, Y., Oh, D. B., Shin, H. D., & Kim, S. W. (2014). Characterization of modular bifunctional processive endoglucanase Cel5 from Hahella chejuensis KCTC 2396. Applied Microbiology and Biotechnology, 98(10), 4421–4435.

    CAS  PubMed  Google Scholar 

  35. Wu, S., Ding, S., Zhou, R., & Li, Z. (2007). Comparative characterization of a recombinant Volvariella volvacea endoglucanase I (EG1) with its truncated catalytic core (EG1-CM), and their impact on the bio-treatment of cellulose-based fabrics. Journal of Biotechnology, 130(4), 364–369.

    CAS  PubMed  Google Scholar 

  36. Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J. K., & Jones, T. A. (1990). Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science, 249(4967), 380–386.

    CAS  PubMed  Google Scholar 

  37. Divne, C., Stahlberg, J., Reinikainen, T., Ruohonen, L., Pettersson, G., Knowles, J. K. C., Teeri, T. T., & Jones, A. (1994). The three-dimensional structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science, 265(5171), 524–528.

    CAS  PubMed  Google Scholar 

  38. Li, Y., Irwin, D. C., & Wilson, D. B. (2007). Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobi fidafusca Cel9A. Applied and Environmental Microbiology, 73(10), 3165–3172.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sánchez, M. M., Fritze, D., Blanco, A., Spröer, C., Tindall, B. J., Schumann, P., Kroppenstedt, R. M., Diaz, P., & Pastor, F. I. J. (2005). Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. International Journal of Systematic and Evolutionary Microbiology, 55(2), 935–939.

    PubMed  Google Scholar 

  40. Gilad, R., Rabinovich, L., Yaron, S., Bayer, A. E., Lamed, R., Gilbert, J. H., & Shoham, Y. (2003). CelI, a Noncellulosomal Family 9 Enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. Journal of Bacteriology, 185(1), 391–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Burstein, T., Shulman, M., Jindou, S., Petkun, S., Frolow, F., & Shoham, Y. (2009). Physical association of the catalytic and helper modules of a family-9 glycoside hydrolase is essential for activity. FEBS Letters, 583(5), 879–884.

    CAS  PubMed  Google Scholar 

  42. Sakon, J., Irwin, D., Wilson, B. D., & Karplus, P. A. (1997). Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nature Structural Biology, 4(10), 810–818.

    CAS  PubMed  Google Scholar 

  43. Tormo, J., Lamed, R., Chirino, A. J., Morag, E., Bayer, E. A., Shoham, Y., & Steitz, T. A. (1996). Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. The EMBO Journal, 15(21), 5739–5751.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jindou, S., Xu, Q., Kenig, R., Shoham, Y., Bayer, E. A., & Lamed, R. (2006). Novel architectural theme of family-9 glycoside hydrolases identified in cellulosomal enzymes of Acetivibrio cellulolyticus and Clostridium thermocellum. FEMS Microbiology Letters, 254(2), 308–316.

    CAS  PubMed  Google Scholar 

  45. Oliveira, O. V., Freitas, L. C., Straatsma, T. P., & Lins, R. D. (2009). Interaction between the CBM of Cel9A from Thermobifida fusca and cellulose fibers. Journal of Molecular Recognition, 22(1), 38–45.

    CAS  PubMed  Google Scholar 

  46. Zhou W, Irwin CD, Escovar-Kousen Jose, Wilson B, David K, Studies of Thermobifida fusca Cel9A active site mutant enzymes. Biochemistry 43(30): 9655–9663(2004).

    CAS  PubMed  Google Scholar 

  47. Kataeva, I. A., Shah, A., West, L. T., Li, X. L., & Ljungdahl, L. G. (2002). The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface. Applied and Environmental Microbiology, 68(9), 4292–4300.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tomme, P., Kwan, E., Gilkes, N. R., Kilburn, D. G., & Warren, R. A. J. (1996). Characterization of CenC, an enzyme from Cellulomonas fimi with both endo- and exoglucanase activities. Journal of Bacteriology, 178(14), 4216–4223.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Haq, I. U., Akram, F., Khan, M. A., Hussain, Z., Nawaz, A., Iqbal, K., & Shah, A. J. (2015). CenC, a multidomain thermostable GH9 processive endoglucanase from Clostridium thermocellum: Cloning, characterization and saccharification studies. World Journal of Microbiology and Biotechnology, 31(11), 1–12.

    Google Scholar 

  50. Cohen, R., Jensen, K. A., Houtman, C. J., & Hammel, K. E. (2002). Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose. FEBS Letters, 531(3), 483–488.

    CAS  PubMed  Google Scholar 

  51. Rättö, M., Ritschkoff, A. C., & Viikari, L. (1997). The effect of oxidative pretreatment on cellulose degradation by Poria placenta and Trichoderma reesei cellulases. Applied Microbiology and Biotechnology, 48(1), 53–57.

    Google Scholar 

  52. Parsiegla, G., Juy, M., Reverbel-Leroy, C., Tardif, C., Belaïch, J. P., Driguez, H., & Haser, R. (1998). The crystal structure of the processive endocellulase CelF of Clostridium cellulolyticum in complex with a thiooligosaccharide inhibitor at 2.0 Å resolution. The EMBO Journal, 17(19), 5551–5562.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Horn, S. J., Sørlie, M., Vårum, K. M., Väljamäe, P., & Eijsink, V. G. (2012). Measuring processivity. Methods in Enzymology, 510, 69–95.

    CAS  PubMed  Google Scholar 

  54. Zhang, X. Z., Sathitsuksanoh, N., & Zhang, Y. H. P. (2010). Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: heterologous expression, characterization, and synergy with family 48 cellobiohydrolase. Bioresource Technology, 101(14), 5534–5538.

    CAS  PubMed  Google Scholar 

  55. Fagerstam, L. G., & Pettersson, L. G. (1980). The 1,4-β-glucan cellobiohydrolase of Trichoderma reesei QM9414. FEBS Letters, 119(1), 97–100.

    Google Scholar 

  56. Henrissat, B., Driguez, H., Viet, C., & Schulein, M. (1985). Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Techno, 3(8), 722–726.

    CAS  Google Scholar 

  57. Violot, S., Aghajari, N., Czjzek, M., Feller, G., Sonan, G. K., Gouet, P., Gerday, C., Haser, R., & Receveur-Brechot, V. (2005). Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by x-ray diffraction and small angle x-ray scattering. Journal of Molecular Biology, 348(5), 1211–1224.

    CAS  PubMed  Google Scholar 

  58. Wu, S. S., Zhang, Y. M., Xu, S., Wu S. F. (2019). Processive action of glycoside hydrolase family 5 endoglucanase from Volvariella volvacea and its application in the preparation of nanofibers. 257th ACS National Meeting & Exposition, Orlando, USA, March 31-April 4, 2019.

Download references

Funding

This project was financially supported by the National Natural Science Foundation of China (no. 31470593, no. 31730106) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufang Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Wu, S. Processivity and the Mechanisms of Processive Endoglucanases. Appl Biochem Biotechnol 190, 448–463 (2020). https://doi.org/10.1007/s12010-019-03096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03096-w

Keywords

Navigation