Skip to main content

Advertisement

Log in

Sequences, Domain Architectures, and Biological Functions of the Serine/Threonine and Histidine Kinases in Synechocystis sp. PCC 6803

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a photoautotrophic prokaryote with plant-like photosynthetic machineries which significantly contribute to global carbon fixation and atmospheric oxygen production. Because of the relatively short cell doubling time, small size of the genome, and the ease for genetic manipulation, Synechocystis is a popular model organism for studies including photosynthesis and biofuel production. The cyanobacterium contains 12 eukaryotic type Ser/Thr kinases (SpkA–L) and 49 histidine kinases (Hik1–47 and Sll1334 and Sll5060 are named as Hik48 and Hik49, respectively, in this review) of the two-component system. All SpkA–L kinases have a eukaryotic kinase DFG signature in their A-loops. Based on the types of the kinase domains, the Spks can be separated into three groups: one group contains SpkA and SpkG which are related to human kinases, while SpkH–L are in another group that is distinct from human kinases. The third group contains SpkB–F which are between the first two groups. Four histidine kinases (Hiks17, 36, 45, and 48) lack a clear histidine kinase domain, and the conserved phosphorylatable histidine residue could not be identified for six histidine kinases (Hiks11, 18, 29, 37, 39, and 43) even though they have clear histidine kinase domains. Each of the remaining 39 has a histidine kinase domain with the conserved histidine residue. Eight hybrid histidine kinases contain one or two receiver domains, and they all, except Hik25 (Slr0222), have the conserved phosphorylatable aspartate. The disruptants of all kinases except hik13 and hik15 have been generated, and the majority of them have modest or no obvious phenotypes, indicating other kinases could functionally compensate the loss of a particular kinase. This review presents a comprehensive discussion including a spectrum of sequence, domain architecture, in vivo function, and proteomics investigations of Ser/Thr and histidine kinases. Understanding the sequences, domain architectures, and biology of the kinases will help to integrate “omic” data to clarify their exact biochemical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexander, R. P., Lowenthal, A. C., Harshey, R. M., & Ottemann, K. M. (2010). CheV: CheW-like coupling proteins at the core of the chemotaxis signaling network. Trends in Microbiology, 18(11), 494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anantharaman, V., & Aravind, L. (2000). Cache - a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends in Biochemical Sciences, 25(11), 535–537.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, S. L., & McIntosh, L. (1991). Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. Journal of Bacteriology, 173(9), 2761–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aravind, L., & Ponting, C. P. (1999). The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiology Letters, 176(1), 111–116.

    Article  CAS  PubMed  Google Scholar 

  5. Ashby, M. K., & Houmard, J. (2006). Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution. Microbiology and Molecular Biology Reviews, 70(2), 472–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ausmees, N., Mayer, R., Weinhouse, H., Volman, G., Amikam, D., Benziman, M., & Lindberg, M. (2001). Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiology Letters, 204(1), 163–167.

    Article  CAS  PubMed  Google Scholar 

  7. Beuf, L., Bedu, S., Durand, M. C., & Joset, F. (1994). A protein involved in co-ordinated regulation of inorganic carbon and glucose metabolism in the facultative photoautotrophic cyanobacterium Synechocystis PCC6803. Plant Molecular Biology, 25(5), 855–864.

    Article  CAS  PubMed  Google Scholar 

  8. Birck, C., Mourey, L., Gouet, P., Fabry, B., Schumacher, J., Rousseau, P., Kahn, D., & Samama, J.-P. (1999). Conformational changes induced by phosphorylation of the FixJ receiver domain. Structure, 7(12), 1505–1515.

    Article  CAS  PubMed  Google Scholar 

  9. Black, K., Buikema, W. J., & Haselkorn, R. (1995). The hglK gene is required for localization of heterocyst-specific glycolipids in the cyanobacterium Anabaena sp. strain PCC 7120. Journal of Bacteriology, 177(22), 6440–6448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blount, M. A., Zoraghi, R., Ke, H., Bessay, E. P., Corbin, J. D., & Francis, S. H. (2006). A 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization. Molecular Pharmacology, 70(5), 1822–1831.

    Article  CAS  PubMed  Google Scholar 

  11. Bohnert, H. J., Ayoubi, P., Borchert, C., Bressan, R. A., Burnap, R. L., Cushman, J. C., Cushman, M. A., Deyholos, M., Fischer, R., Galbraith, D. W., Hasegawa, P. M., Jenks, M., Kawasaki, S., Koiwa, H., Kore-eda, S., Lee, B.-H., Michalowski, C. B., Misawa, E., Nomura, M., Ozturk, N., Postier, B., Prade, R., Song, C.-P., Tanaka, Y., Wang, H., & Zhu, J.-K. (2001). A genomics approach towards salt stress tolerance. Plant Physiology and Biochemistry, 39(3-4), 295–311.

    Article  CAS  Google Scholar 

  12. Capra, E. J., & Laub, M. T. (2012). Evolution of two-component signal transduction systems. Annual Review of Microbiology, 66(1), 325–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Casino, P., Rubio, V., & Marina, A. (2009). Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell, 139(2), 325–336.

    Article  CAS  PubMed  Google Scholar 

  14. Charbonneau, H., Prusti, R. K., LeTrong, H., Sonnenburg, W. K., Mullaney, P. J., Walsh, K. A., & Beavo, J. A. (1990). Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterases. Proceedings of the National Academy of Sciences, 87, 288–292.

    Article  CAS  Google Scholar 

  15. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., & Thompson, J. D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31(13), 3497–3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohen, S. E., & Golden, S. S. (2015). Circadian rhythms in cyanobacteria. Microbiology and Molecular Biology Reviews, 79(4), 373–385.

    Article  CAS  PubMed  Google Scholar 

  17. Cornilescu, G., Ulijasz, A. T., Cornilescu, C. C., Markley, J. L., & Vierstra, R. D. (2008). Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state. Journal of Molecular Biology, 383(2), 403–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dörr, J., Hurek, T., & Reinhold-Hurek, B. (1998). Type IV pili are involved in plant-microbe and fungus-microbe interactions. Molecular Microbiology, 30(1), 7–17.

    Article  PubMed  Google Scholar 

  19. Fang, L., Ge, H., Huang, X., Liu, Y., Lu, M., Wang, J., Chen, W., Xu, W., & Wang, Y. (2017). Trophic mode-dependent proteomic analysis reveals functional significance of light-independent chlorophyll synthesis in Synechocystis sp. PCC 6803. Molecular Plant, 10(1), 73–85.

    Article  CAS  PubMed  Google Scholar 

  20. Ferris, H. U., Dunin-Horkawicz, S., Mondéjar, L. G., Hulko, M., Hantke, K., Martin, J., Schultz, J. E., Zeth, K., Lupas, A. N., & Coles, M. (2011). The mechanisms of HAMP-mediated signaling in transmembrane receptors. Structure, 19(3), 378–385.

    Article  CAS  PubMed  Google Scholar 

  21. Finn, R. D., Attwood, T. K., Babbitt, P. C., Bateman, A., Bork, P., Bridge, A. J., Chang, H.-Y., Dosztányi, Z., El-Gebali, S., Fraser, M., Gough, J., Haft, D., Holliday, G. L., Huang, H., Huang, X., Letunic, I., Lopez, R., Lu, S., Marchler-Bauer, A., Mi, H., Mistry, J., Natale, D. A., Necci, M., Nuka, G., Orengo, C. A., Park, Y., Pesseat, S., Piovesan, D., Potter, S. C., Rawlings, N. D., Redaschi, N., Richardson, L., Rivoire, C., Sangrador-Vegas, A., Sigrist, C., Sillitoe, I., Smithers, B., Squizzato, S., Sutton, G., Thanki, N., Thomas, P. D., Tosatto, S. C. E., Wu, C. H., Xenarios, I., Yeh, L.-S., Young, S.-Y., & Mitchell, A. L. (2017). InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Research, 45(D1), D190–D199.

    Article  CAS  PubMed  Google Scholar 

  22. Fledler, B., Broc, D., Schubert, H., Rediger, A., Börner, T., & Wilde, A. (2004). Involvement of cyanobacterial phytochromes in growth under different light qualities and quantities. Photochemistry and Photobiology, 79(6), 551–555.

    Article  Google Scholar 

  23. Fokina, O., Chellamuthu, V.-R., Forchhammer, K., & Zeth, K. (2010). Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein. Proceedings of the National Academy of Sciences, 107, 19760–19765.

    Article  Google Scholar 

  24. Fokina, O., Herrmann, C., & Forchhammer, K. (2011). Signal-transduction protein PII from Synechococcus elongatus PCC 7942 senses low adenylate energy charge <em>in vitro</em>. Biochemical Journal, 440(1), 147–156.

    Article  CAS  PubMed  Google Scholar 

  25. Galkin, A. N., Mikheeva, L. E., & Shestakov, S. V. (2003). The insertional inactivation of genes encoding eukaryotic-type serine/threonine protein kinases in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology, 72(1), 52–57.

    Article  CAS  Google Scholar 

  26. Galperin, M. Y., Gaidenko, T. A., Mulkidjanian, A. Y., Nakano, M., & Price, C. W. (2001). MHYT, a new integral membrane sensor domain. FEMS Microbiology Letters, 205(1), 17–23.

    Article  CAS  PubMed  Google Scholar 

  27. Galperin, M. Y., Nikolskaya, A. N., & Koonin, E. V. (2001). Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiology Letters, 203(1), 11–21.

    Article  CAS  PubMed  Google Scholar 

  28. Gao, R., & Stock, A. M. (2009). Biological insights from structures of two-component proteins. Annual Review of Microbiology, 63(1), 133–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ge, H., Fang, L., Huang, X., Wang, J., Chen, W., Liu, Y., Zhang, Y., Wang, X., Xu, W., He, Q., & Wang, Y. (2017). Translating divergent environmental stresses into a common proteome response through the histidine kinase 33 (Hik33) in a model cyanobacterium. Molecular & Cellular Proteomics, 16(7), 1258–1274.

    Article  CAS  Google Scholar 

  30. Giner-Lamia, J., López-Maury, L., Reyes, J. C., & Florencio, F. J. (2012). The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiology, 159(4), 1806–1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giner-Lamia, J., López-Maury, L., & Florencio, F. J. (2014). Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803. PLoS One, 9, e108912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gutu, A., & O’Shea, E. K. (2013). Two antagonistic clock-regulated histidine kinases time the activation of circadian gene expression. Molecular Cell, 50(2), 288–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hagemann, M., Richter, S., & Mikkat, S. (1997). The ggtA gene encodes a subunit of the transport system for the osmoprotective compound glucosylglycerol in Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 179(3), 714–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirani, T. A., Suzuki, I., Murata, N., Hayashi, H., & Eaton-Rye, J. J. (2001). Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803. Plant Molecular Biology, 45(2), 133–144.

    Article  CAS  PubMed  Google Scholar 

  35. Ho, Y. S. J., Burden, L. M., & Hurley, J. H. (2000). Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. The EMBO Journal, 19(20), 5288–5299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsiao, H. Y., He, Q., Van Waasbergen, L. G., & Grossman, A. R. (2004). Control of photosynthetic and high-light-responsive genes by the histidine kinase DspA: negative and positive regulation and interactions between signal transduction pathways. Journal of Bacteriology, 186(12), 3882–3888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, D., Zhou, T., Lafleur, K., Nevado, C., & Caflisch, A. (2010). Kinase selectivity potential for inhibitors targeting the ATP binding site: a network analysis. Bioinformatics, 26(2), 198–204.

    Article  CAS  PubMed  Google Scholar 

  38. Huse, M., & Kuriyan, J. (2002). The conformational plasticity of protein kinases. Cell, 109(3), 275–282.

    Article  CAS  PubMed  Google Scholar 

  39. Inaba, M., Sakamoto, A., & Murata, N. (2001). Functional expression in Escherichia coli of low-affinity and high-affinity Na+(Li+)/H+ antiporters of Synechocystis. Journal of Bacteriology, 183(4), 1376–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C. R., Tanabe, A., Golden, S. S., Johnson, C. H., & Kondo, T. (1998). Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science, 281(5382), 1519–1523.

    Article  CAS  PubMed  Google Scholar 

  41. Iwasaki, H., Williams, S. B., Kitayama, Y., Ishiura, M., Golden, S. S., & Kondo, T. (2000). A KaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell, 101(2), 223–233.

    Article  CAS  PubMed  Google Scholar 

  42. Kahlon, S., Beeri, K., Ohkawa, H., Hihara, Y., Murik, O., Suzuki, I., Ogawa, T., & Kaplan, A. (2006). A putative sensor kinase, Hik31, is involved in the response of Synechocystis sp. strain PCC 6803 to the presence of glucose. Microbiology, 152(3), 647–655.

    Article  CAS  PubMed  Google Scholar 

  43. Kamei, A., Yuasa, T., Orikawa, K., Geng, X. X., & Ikeuchi, M. (2001). A eukaryotic-type protein kinase, SpkA, is required for normal motility of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 183(5), 1505–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kamei, A., Yuasa, T., Geng, X., & Ikeuchi, M. (2002). Biochemical examination of the potential eukaryotic-type protein kinase genes in the complete genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803. DNA Research, 9(3), 71–78.

    Article  CAS  PubMed  Google Scholar 

  45. Kamei, A., Yoshihara, S., Yuasa, T., Geng, X., & Ikeuchi, M. (2003). Biochemical and functional characterization of a eukaryotic-type protein kinase, SpkB, in the cyanobacterium, Synechocystis sp. PCC 6803. Current Microbiology, 46(4), 0296–0301.

    Article  CAS  Google Scholar 

  46. Kanesaki, Y., Suzuki, I., Allakhverdiev, S. I., Mikami, K., & Murata, N. (2002). Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochemical and Biophysical Research Communications, 290(1), 339–348.

    Article  CAS  PubMed  Google Scholar 

  47. Kanesaki, Y., Yamamoto, H., Paithoonrangsarid, K., Shoumskaya, M., Suzuki, I., Hayashi, H., & Murata, N. (2007). Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium, Synechocystis sp. PCC 6803. The Plant Journal, 49(2), 313–324.

    Article  CAS  PubMed  Google Scholar 

  48. Kappell, A. D., & van Waasbergen, L. G. (2007). The response regulator RpaB binds the high light regulatory 1 sequence upstream of the high-light-inducible hliB gene from the cyanobacterium Synechocystis PCC 6803. Archives of Microbiology, 187(4), 337–342.

    Article  CAS  PubMed  Google Scholar 

  49. Khorchid, A., & Ikura, M. (2006). Bacterial histidine kinase as signal sensor and transducer. The International Journal of Biochemistry & Cell Biology, 38(3), 307–312.

    Article  CAS  Google Scholar 

  50. Kieselbach, T., Mant, A., Robinson, C., & Schroder, W. P. (1998). Characterisation of an Arabidopsis cDNA encoding a thylakoid lumen protein related to a novel 'pentapeptide repeat' family of proteins. FEBS Letters, 428(3), 241–244.

    Article  CAS  PubMed  Google Scholar 

  51. Kim, S.-H., Wang, W., & Kim, K. K. (2002). Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity. Proceedings of the National Academy of Sciences, 99, 11611–11615.

    Article  CAS  Google Scholar 

  52. Knowles, V. L., & Plaxton, W. C. (2003). From genome to enzyme: analysis of key glycolytic and oxidative pentose-phosphate pathway enzymes in the cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 44(7), 758–763.

    Article  CAS  PubMed  Google Scholar 

  53. Kolber, Z. S., Van Dover, C. L., Niederman, R. A., & Falkowski, P. G. (2000). Bacterial photosynthesis in surface waters of the open ocean. Nature, 407(6801), 177–179.

    Article  CAS  PubMed  Google Scholar 

  54. Krell, T., Lacal, J., Busch, A., Silva-Jiménez, H., Guazzaroni, M.-E., & Ramos, J. L. (2010). Bacterial sensor kinases: diversity in the recognition of environmental signals. Annual Review of Microbiology, 64(1), 539–559.

    Article  CAS  PubMed  Google Scholar 

  55. Kurdrid, P., Senachak, J., Sirijuntarut, M., Yutthanasirikul, R., Phuengcharoen, P., Jeamton, W., Roytrakul, S., Cheevadhanarak, S., & Hongsthong, A. (2011). Comparative analysis of the Spirulina platensis subcellular proteome in response to low- and high-temperature stresses: uncovering cross-talk of signaling components. Proteome Science, 9(1), 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kurian, D., Jansen, T., & Maenpaa, P. (2006). Proteomic analysis of heterotrophy in Synechocystis sp. PCC 6803. Proteomics, 6(5), 1483–1494.

    Article  CAS  PubMed  Google Scholar 

  57. Lacey, M., Agasing, A., Lowry, R., & Green, J. (2013). Identification of the YfgF MASE1 domain as a modulator of bacterial responses to aspartate. Open Biology, 3(6).

  58. Laurent, S., Jang, J., Janicki, A., Zhang, C.-C., & Bédu, S. (2008). Inactivation of spkD, encoding a Ser/Thr kinase, affects the pool of the TCA cycle metabolites in Synechocystis sp. strain PCC 6803. Microbiology, 154(7), 2161–2167.

    Article  CAS  PubMed  Google Scholar 

  59. Liang, C., Zhang, X., Chi, X., Guan, X., Li, Y., Qin, S., & Shao, H. B. (2011). Serine/threonine protein kinase SpkG is a candidate for high salt resistance in the unicellular cyanobacterium Synechocystis sp. PCC 6803. PLoS One, 6, e18718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. López-Maury, L., García-Domínguez, M., Florencio, F. J., & Reyes, J. C. (2002). A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Molecular Microbiology, 43(1), 247–256.

    Article  PubMed  Google Scholar 

  61. Los, D. A., Zorina, A., Sinetova, M., Kryazhov, S., Mironov, K., & Zinchenko, V. V. (2010). Stress sensors and signal transducers in cyanobacteria. Sensors, 10(3), 2386–2415.

    Article  CAS  PubMed  Google Scholar 

  62. Los, D. A., Mironov, K. S., & Allakhverdiev, S. I. (2013). Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynthesis Research, 116(2-3), 489–509.

    Article  CAS  PubMed  Google Scholar 

  63. Man, N., & Carr, N. G. (1974). Control of macromolecular composition and cell division in the blue-green alga Anacystis nidulans. Microbiology, 83, 399–405.

    Google Scholar 

  64. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298(5600), 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  65. Marin, K., Suzuki, I., Yamaguchi, K., Ribbeck, K., Yamamoto, H., Kanesaki, Y., Hagemann, M., & Murata, N. (2003). Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proceedings of the National Academy of Sciences, 100, 9061–9066.

    Article  CAS  Google Scholar 

  66. Mata-Cabana, A., García-Domínguez, M., Florencio, F. J., & Lindahl, M. (2012). Thiol-based redox modulation of a cyanobacterial eukaryotic-type serine/threonine kinase required for oxidative stress tolerance. Antioxidants & Redox Signaling, 17(4), 521–533.

    Article  CAS  Google Scholar 

  67. Mayer, B. J. (2001). SH3 domains: complexity in moderation. Journal of Cell Science, 114(Pt 7), 1253–1263.

    CAS  PubMed  Google Scholar 

  68. Mikami, K., Kanesaki, Y., Suzuki, I., & Murata, N. (2002). The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Molecular Microbiology, 46(4), 905–915.

    Article  CAS  PubMed  Google Scholar 

  69. Mironov, K. S., Sidorov, R. A., Trofimova, M. S., Bedbenov, V. S., Tsydendambaev, V. D., Allakhverdiev, S. I., & Los, D. A. (2012). Light-dependent cold-induced fatty acid unsaturation, changes in membrane fluidity, and alterations in gene expression in Synechocystis. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817(8), 1352–1359.

    Article  CAS  Google Scholar 

  70. Murata, N., & Los, D. A. (2006). Histidine kinase Hik33 is an important participant in cold-signal transduction in cyanobacteria. Physiologia Plantarum, 126(1), 17–27.

    Article  CAS  Google Scholar 

  71. Nagarajan, S., Sherman, D. M., Shaw, I., & Sherman, L. A. (2012). Functions of the duplicated hik31 operons in central metabolism and responses to light, dark, and carbon sources in Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 194(2), 448–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nagarajan, S., Srivastava, S., & Sherman, L. A. (2014). Essential role of the plasmid hik31 operon in regulating central metabolism in the dark in Synechocystis sp. PCC 6803. Molecular Microbiology, 91(1), 79–97.

    Article  CAS  PubMed  Google Scholar 

  73. Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H., Oyama, T., & Kondo, T. (2005). Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science, 308(5720), 414–415.

    Article  CAS  PubMed  Google Scholar 

  74. Nanatani, K., Shijuku, T., Takano, Y., Zulkifli, L., Yamazaki, T., Tominaga, A., Souma, S., Onai, K., Morishita, M., Ishiura, M., Hagemann, M., Suzuki, I., Maruyama, H., Arai, F., & Uozumi, N. (2015). Comparative analysis of kdp and ktr mutants reveals distinct roles of the potassium transporters in the model cyanobacterium Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 197(4), 676–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Narikawa, R., Ishizuka, T., Muraki, N., Shiba, T., Kurisu, G., & Ikeuchi, M. (2013). Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Proceedings of the National Academy of Sciences, 110, 918–923.

    Article  Google Scholar 

  76. Nikolskaya, A. N., Mulkidjanian, A. Y., Beech, I. B., & Galperin, M. Y. (2003). MASE1 and MASE2: two novel integral membrane sensory domains. Journal of Molecular Microbiology and Biotechnology, 5(1), 11–16.

    Article  CAS  PubMed  Google Scholar 

  77. Nodop, A., Suzuki, I., Barsch, A., Schröder, A.-K., Niehaus, K., Staiger, D., Pistorius Elfriede, K., & Michel, K.-P. (2006) Physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking histidine kinase Slr1759 and response regulator Slr1760. Zeitschrift für Naturforschung C, pp. 865.

  78. Nolen, B., Taylor, S., & Ghosh, G. (2004). Regulation of protein kinases. Molecular Cell, 15(5), 661–675.

    Article  CAS  PubMed  Google Scholar 

  79. Ochoa de Alda, J. A. G., & Houmard, J. (2000). Genomic survey of cAMP and cGMP signalling components in the cyanobacterium Synechocystis PCC 6803. Microbiology, 146(12), 3183–3194.

    Article  CAS  PubMed  Google Scholar 

  80. Ogawa, T., Bao, D. H., Katoh, H., Shibata, M., Pakrasi, H. B., & Bhattacharyya-Pakrasi, M. (2002). A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. Journal of Biological Chemistry, 277(32), 28981–28986.

    Article  CAS  PubMed  Google Scholar 

  81. Okada, K., Horii, E., Nagashima, Y., Mitsui, M., Matsuura, H., Fujiwara, S., & Tsuzuki, M. (2015). Genes for a series of proteins that are involved in glucose catabolism are upregulated by the Hik8-cascade in Synechocystis sp. PCC 6803. Planta, 241(6), 1453–1462.

    Article  CAS  PubMed  Google Scholar 

  82. Osanai, T., Kanesaki, Y., Nakano, T., Takahashi, H., Asayama, M., Shirai, M., Kanehisa, M., Suzuki, I., Murata, N., & Tanaka, K. (2005). Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 σ factor SigE. Journal of Biological Chemistry, 280(35), 30653–30659.

    Article  CAS  PubMed  Google Scholar 

  83. Pallen, M. J., Francis, M. S., & Fütterer, K. (2003). Tetratricopeptide-like repeats in type-III-secretion chaperones and regulators. FEMS Microbiology Letters, 223(1), 53–60.

    Article  CAS  PubMed  Google Scholar 

  84. Panichkin, V. B., Arakawa-Kobayashi, S., Kanaseki, T., Suzuki, I., Los, D. A., Shestakov, S. V., & Murata, N. (2006). Serine/threonine protein kinase SpkA in Synechocystis sp. strain PCC 6803 is a regulator of expression of three putative pilA operons, formation of thick pili, and cell motility. Journal of Bacteriology, 188(21), 7696–7699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park, S.-Y., Borbat, P. P., Gonzalez-Bonet, G., Bhatnagar, J., Pollard, A. M., Freed, J. H., Bilwes, A. M., & Crane, B. R. (2006). Reconstruction of the chemotaxis receptor-kinase assembly. Nature Structural & Molecular Biology, 13(5), 400–407.

    Article  CAS  Google Scholar 

  86. Pasloske, B. L., & Paranchych, W. (1988). The expression of mutant pilins in Pseudomonas aeruginosa: fifth position glutamate affects pilin methylation. Molecular Microbiology, 2(4), 489–495.

    Article  CAS  PubMed  Google Scholar 

  87. Paumann, M., Regelsberger, G., Obinger, C., & Peschek, G. A. (2005). The bioenergetic role of dioxygen and the terminal oxidase(s) in cyanobacteria. Biochimica et Biophysica Acta, 1707(2-3), 231–253.

    Article  CAS  PubMed  Google Scholar 

  88. Pei, J., & Grishin, N. V. (2001). GGDEF domain is homologous to adenylyl cyclase. Proteins, 42(2), 210–216.

    Article  CAS  PubMed  Google Scholar 

  89. Plohnke, N., Seidel, T., Kahmann, U., Rögner, M., Schneider, D., & Rexroth, S. (2015). The proteome and lipidome of Synechocystis sp. PCC 6803 cells grown under light-activated heterotrophic conditions. Molecular & Cellular Proteomics, 14(3), 572–584.

    Article  CAS  Google Scholar 

  90. Ruszkowski, M., Brzezinski, K., Jedrzejczak, R., Dauter, M., Dauter, Z., Sikorski, M., & Jaskolski, M. (2013). M. truncatula histidine-containing phosphotransfer protein: structural and biochemical insights into cytokinin transduction pathway in plants. The FEBS Journal, 280(15), 3709–3720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ryan, R. P., Fouhy, Y., Lucey, J. F., Crossman, L. C., Spiro, S., He, Y.-W., Zhang, L.-H., Heeb, S., Cámara, M., Williams, P., & Dow, J. M. (2006). Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proceedings of the National Academy of Sciences, 103, 6712–6717.

    Article  CAS  Google Scholar 

  92. Saha, R., Liu, D., Hoynes-O’Connor, A., Liberton, M., Yu, J., Bhattacharyya-Pakrasi, M., Balassy, A., Zhang, F., Moon, T. S., Maranas, C. D., & Pakrasi, H. B. (2016). Diurnal regulation of cellular processes in the cyanobacterium Synechocystis sp. strain PCC 6803: insights from transcriptomic, fluxomic, and physiological analyses. mBio, 7.

  93. Schmitz, O., Katayama, M., Williams, S. B., Kondo, T., & Golden, S. S. (2000). CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science, 289(5480), 765–768.

    Article  CAS  PubMed  Google Scholar 

  94. Shin, B.-J., Oh, J., Kang, S., Chung, Y.-H., Park, Y. M., Kim, Y. H., Kim, S., Bhak, J., & Choi, J.-S. (2008). Cyanobacterial hybrid kinase Sll0043 regulates phototaxis by suppressing pilin and twitching motility protein. The Journal of Microbiology, 46(3), 300–308.

    Article  CAS  PubMed  Google Scholar 

  95. Sinetova, M. A., & Los, D. A. (2016). New insights in cyanobacterial cold stress responses: genes, sensors, and molecular triggers. Biochimica et Biophysica Acta (BBA) - General Subjects, 1860(11), 2391–2403.

    Article  CAS  Google Scholar 

  96. Sinetova, M. A., & Los, D. A. (2016). Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers. Molecular BioSystems, 12(11), 3254–3258.

    Article  CAS  PubMed  Google Scholar 

  97. Singh, A. K., & Sherman, L. A. (2005). Pleiotropic effect of a histidine kinase on carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement for heterotrophic growth. Journal of Bacteriology, 187(7), 2368–2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stanier, R. Y., & Cohen-Bazine, G. C. (1977). Phototrophic prokaryotes: the cyanobacteria. Annual Review of Microbiology, 31(1), 225–274.

    Article  CAS  PubMed  Google Scholar 

  99. Stock, A. M., Robinson, V. L., & Goudreau, P. N. (2000). Two-component signal transduction. Annual Review of Biochemistry, 69(1), 183–215.

    Article  CAS  PubMed  Google Scholar 

  100. Suzuki, I., Los, D. A., Kanesaki, Y., Mikami, K., & Murata, N. (2000). The pathway for perception and transduction of low-temperature signals in Synechocystis. The EMBO Journal, 19(6), 1327–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Suzuki, S., Ferjani, A., Suzuki, I., & Murata, N. (2004). The SphS-SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis. Journal of Biological Chemistry, 279(13), 13234–13240.

    Article  CAS  PubMed  Google Scholar 

  102. Suzuki, I., Kanesaki, Y., Hayashi, H., Hall, J. J., Simon, W. J., Slabas, A. R., & Murata, N. (2005). The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in Synechocystis. Plant Physiology, 138(3), 1409–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Taylor, B. L., & Zhulin, I. B. (1999). PAS domains: internal sensors of oxygen, redox potential, and light. Microbiology and Molecular Biology Reviews, 63(2), 479–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tian, X., Chen, L., Wang, J., Qiao, J., & Zhang, W. (2013). Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. Journal of Proteomics, 78, 326–345.

    Article  CAS  PubMed  Google Scholar 

  106. Tseng, R., Goularte, N. F., Chavan, A., Luu, J., Cohen, S. E., Chang, Y.-G., Heisler, J., Li, S., Michael, A. K., Tripathi, S., Golden, S. S., LiWang, A., & Partch, C. L. (2017). Structural basis of the day-night transition in a bacterial circadian clock. Science (New York, N.Y.), 355, 1174–1180.

    Article  CAS  Google Scholar 

  107. Ulijasz, A. T., Cornilescu, G., Cornilescu, C. C., Zhang, J., Rivera, M., Markley, J. L., & Vierstra, R. D. (2010). Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature, 463(7278), 250–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vermaas, W. (1996). Molecular genetics of the cyanobacteriumSynechocystis sp. PCC 6803: principles and possible biotechnology applications. Journal of Applied Phycology, 8(4-5), 263–273.

    Article  CAS  Google Scholar 

  109. Villar, M. T., Hirschberg, R. L., & Schaefer, M. R. (2001). Role of the Eikenella corrodens pilA locus in pilus function and phase variation. Journal of Bacteriology, 183(1), 55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Whitworth, D. E., & Cock, P. J. A. (2009). Evolution of prokaryotic two-component systems: insights from comparative genomics. Amino Acids, 37(3), 459–466.

    Article  CAS  PubMed  Google Scholar 

  111. Wilde, A., Churin, Y., Schubert, H., & Börner, T. (1997). Disruption of a Synechocystis sp. PCC 6803 gene with partial similarity to phytochrome genes alters growth under changing light qualities. FEBS Letters, 406(1-2), 89–92.

    Article  CAS  PubMed  Google Scholar 

  112. Xu, C., & Min, J. (2011). Structure and function of WD40 domain proteins. Protein & Cell, 2(3), 202–214.

    Article  CAS  Google Scholar 

  113. Xu, W., Amire-Brahimi, B., Xie, X.-J., Huang, L., & Ji, J.-Y. (2014). All-atomic molecular dynamic studies of human CDK8: insight into the A-loop, point mutations and binding with its partner CycC. Computational Biology and Chemistry, 51, 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang, C., Hua, Q., & Shimizu, K. (2002). Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metabolic Engineering, 4(3), 202–216.

    Article  CAS  PubMed  Google Scholar 

  115. Yoshihara, S., Geng, X., & Ikeuchi, M. (2002). pilG gene cluster and split pilL genes involved in pilus biogenesis, motility and genetic transformation in the cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 43(5), 513–521.

    Article  CAS  PubMed  Google Scholar 

  116. Zhulin, I. B., Nikolskaya, A. N., & Galperin, M. Y. (2003). Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. Journal of Bacteriology, 185(1), 285–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zorina, A., Stepanchenko, N., Novikova, G. V., Sinetova, M., Panichkin, V. B., Moshkov, I. E., Zinchenko, V. V., Shestakov, S. V., Suzuki, I., Murata, N., & Los, D. A. (2011). Eukaryotic-like Ser/Thr protein kinases SpkC/F/K are involved in phosphorylation of GroES in the cyanobacterium Synechocystis. DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 18(3), 137–151.

    Article  CAS  Google Scholar 

  118. Zorina, A. A., Bedbenov, V. S., Novikova, G. V., Panichkin, V. B., & Los, D. A. (2014). Involvement of serine/threonine protein kinases in the cold stress response in the cyanobacterium Synechocystis sp. PCC 6803: functional characterization of SpkE protein kinase. Molecular Biology, 48(3), 390–398.

    Article  CAS  Google Scholar 

  119. Cano M., Holland C. S., Artier J., Burnap L. R., Ghirardi M., Morgan A. J., & Yu J., (2018). Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria. Cell Reports. 23(3):667–672.

Download references

Acknowledgements

We thank Drs. Taylor and Perkins from the Department of Chemistry at the University of Louisiana at Lafayette and Jianping Yu from National Renewable Energy Laboratory for carefully reading and editing the manuscript.

Funding

The authors thank the support (NSF(2010)-PFUND-217 and LEQSF(2013-16)-RD-A-15) from the US National Science Foundation’s EPSCoR Program and Louisiana RCS Program to W.X.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu Xu or Yingchun Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Supplementary Figure 1

Bacterial two-component systems. a, A typical His-Asp two-component system including a sensor & histidine kinase and a response regulator; b, A His-Asp-His-Asp phosphorelay including a hybrid histidine, a linker often with a Hpt domain and a response regulator. (PDF 25 kb)

Supplementary Figure 2

Domain architectures of the sensor and histidine kinases of Synechocystis without GAF and PAS domains. (PDF 41 kb)

Supplementary Figure 3

Domain architectures of the sensor and histidine kinases of Synechocystis with GAF domain(s). (PDF 22 kb)

Supplementary Figure 4

Domain architectures of the sensor and histidine kinases of Synechocystis with PAS domain(s). (PDF 22 kb)

Supplementary Figure 5

Domain architectures of the sensor and histidine kinases of Synechocystis with GAF and PAS domains. (PDF 22 kb)

Supplementary Figure 6

Domain architectures of the hybrid histidine kinases of Synechocystis with only one receiver domain. (PDF 45 kb)

Supplementary Figure 7

Domain architectures of the hybrid histidine kinases of Synechocystis with two receiver domains. (PDF 26 kb)

Supplementary Figure 8

A local 3-D structure shows hydrogen bond interactions between the conserved phosphorylatable His260 and its surrounding residues of a histidine kinase in PDB (PDB ID: 3DGE Chain A). His 260 participates in two hydrogen bonds: a hydrogen bond between His260:N and Ala256:O and the distance is 2.99 Å, and a hydrogen bond between His260:O and Glu261:N and the distance is 2.24 Å. Asn257 forms two hydrogen bonds to bridge Ala256 and Glu261 together: a hydrogen bond between Asn257:N and Ala256:O and the distance is 2.24 Å, and a hydrogen bond between Asn257:O and Glu261:N and the distance is 2.80 Å. (PDF 65 kb)

Supplementary Figure 9

Amino acid sequence alignments of the histidine kinases of Synechocystis with either similar sizes or domain architectures. a, A sequence alignment of the histidine kinases with similar sizes (650aa-1000aa) along with a histidine kinase in PDB (PDB ID: 3DGE Chain A). The conserved phosphorylatable histidine is labelled; b, A sequence alignments of the histidine kinases with similar domain architectures. Two conserved histidine residues are labelled; c, A sequence alignments of the histidine kinases with similar domain architectures. A conserved histidine residue is labelled. (PDF 86 kb)

Supplementary Figure 10

An amino acid sequence alignment of the histidine-containing phosphotransfer (Hpt) domains of Synechocystis histidine kinases along with two PAS domains (PDB IDs: 3MYF Chain A and 3US6 Chain A) from PDB. The conserved phosphorylatable histidine is labelled. (PDF 37 kb)

Supplementary Figure 11

An amino acid sequence alignment of the PAS domains of Synechocystis histidine kinases along with one PAS domain (PDB ID: 2VLG Chain A) from PDB. (PDF 76 kb)

Supplementary Figure 12

An amino acid sequence alignment of the PAS domains of Synechocystis histidine kinases with two or more PAS domains. A conserved Asp residue is labelled. (PDF 60 kb)

Supplementary Figure 13

An amino acid sequence alignment of the GAF domains of Synechocystis histidine kinases along with two GAF domains (PDB IDs: 2K2N Chain A and 2KOI Chain A) from PDB. (PDF 73 kb)

Supplementary Figure 14

An amino acid sequence alignment of the selected GAF domains of Synechocystis histidine kinases. a, The GAF domain of Hik35 is highly related to two GAF domains (PDB IDs: 2K2N Chain A and 2KOI Chain A) from PDB; b, An example of highly related GAF domains. (PDF 36 kb)

Supplementary Figure 15

An amino acid sequence alignment of PKN2 type of Ser/Thr kinases of Synechocystis. The DFG motif is labelled. (PDF 95 kb)

Supplementary Figure 16

An amino acid sequence alignment of ABC1 type of Ser/Thr kinases of Synechocystis. The DFG motif is labelled. (PDF 822 kb)

Supplementary Figure 17

Domain architecture of PKN2 type of Ser/Thr kinases of Synechocystis. (PDF 22 kb)

Supplementary Figure 18

Domain architecture of ABC1 type of Ser/Thr kinases of Synechocystis. (PDF 18 kb)

Supplementary Figure 19

An amino acid sequence alignment of Hik31 (chromosomal gene product) and Hik47 (plasmid gene product) of Synechocystis. (PDF 30 kb)

Supplementary Figure 20

Domain architecture of PKN2 type of Ser/Thr kinases of Synechocystis. (PDF 22 kb)

Supplementary Figure 21

Domain architecture of ABC1 type of Ser/Thr kinases of Synechocystis. (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Wang, Y. Sequences, Domain Architectures, and Biological Functions of the Serine/Threonine and Histidine Kinases in Synechocystis sp. PCC 6803. Appl Biochem Biotechnol 188, 1022–1065 (2019). https://doi.org/10.1007/s12010-019-02971-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02971-w

Keywords

Navigation