Skip to main content
Log in

Probing Gallate-Mediated Selectivity and High-Affinity Binding of Epigallocatechin Gallate: a Way-Forward in the Design of Selective Inhibitors for Anti-apoptotic Bcl-2 Proteins

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Selective inhibition is a key focus in the design of chemotherapeutic compounds that can abrogate the oncogenic activities of anti-apoptotic Bcl-2 proteins. Although recent efforts have led to the development of highly selective BH3 mimetics, setbacks such as toxicities have limited their use in cancer therapy. Epigallocatechingallate (EGCG) has been widely reported to selectively inhibit Bcl-2 and Bcl-xL compared to other green tea phenols due to its gallate group. Herein, we investigate the interaction dynamics of EGCG at the hydrophobic grooves of Bcl-2 and Bcl-xL and the consequential effects on their BH4 domains. Arg143 and Asp108 (Bcl-2), and Glu96 and Tyr195 (Bcl-xL) formed high-affinity hydrogen interactions with the gallate group while non-gallate groups of EGCG formed weak interactions. EGCG-bound proteins showed systemic perturbations of BH4 domains coupled with the burial of crucial surface-exposed residues such as Lys17 (Bcl-2) and Asp11 (Bcl-xL); hence, a distortion of non-canonical domain interactions. Interactions of gallate group of EGCG with key hydrophobic groove residues underlie EGCG selectivity while concurrent BH4 domain perturbations potentiate EGCG inhibitory activities. Findings will aid the optimization and design of selective inhibitors that could suppress anti-apoptotic activities of Bcl2-family proteins with minimal toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baguley, B. C. (2010). Multiple drug resistance mechanisms in cancer. Molecular Biotechnology, 46(3), 308–316. https://doi.org/10.1007/s12033-010-9321-2.

    Article  CAS  PubMed  Google Scholar 

  2. Wijdeven, R. H., Pang, B., Assaraf, Y. G., & Neefjes, J. (2016). Old drugs, novel ways out: drug resistance toward cytotoxic chemotherapeutics. Drug Resistance Updates, 28, 65–81. https://doi.org/10.1016/j.drup.2016.07.001.

    Article  PubMed  Google Scholar 

  3. Ashkenazi, A., Fairbrother, W. J., Leverson, J. D., & Souers, A. J. (2017). From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nature Reviews Drug Discovery., 16(4), 273–284. https://doi.org/10.1038/nrd.2016.253.

    Article  CAS  PubMed  Google Scholar 

  4. Delbridge, A. R. D., Grabow, S., Strasser, A., & Vaux, D. L. (2016). Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature Reviews Cancer., 16(2), 99–109. https://doi.org/10.1038/nrc.2015.17.

    Article  CAS  PubMed  Google Scholar 

  5. Kvansakul, M., & Hinds, M. G. (2015). The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis, 20(2), 136–150. https://doi.org/10.1007/s10495-014-1051-7.

    Article  CAS  PubMed  Google Scholar 

  6. Adams, J. M., & Cory, S. (2017). The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death and Differentiation., 25(1), 27–36. https://doi.org/10.1038/cdd.2017.161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sattler, M., Liang, H., Nettesheim, D., Meadows, R. P., Harlan, J. E., Eberstadt, M., Yoon, H. S., Shuker, S. B., Chang, B. S., Minn, A. J., Thompson, C. B., & Fesik, S. W. (1997). Structure of Bcl-x (L)-Bak peptide complex: recognition between regulators of apoptosis. Science, 275(5302), 983–986. https://doi.org/10.1126/science.275.5302.983.

    Article  CAS  PubMed  Google Scholar 

  8. Bharatham, N., Chi, S.-W., & Yoon, H. S. (2011). Molecular basis of Bcl-XL-p53 interaction: insights from molecular dynamics simulations. PLoS One, 6(10), e26014. https://doi.org/10.1371/journal.pone.0026014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’neill, K. L., Huang, K., Zhang, J., Chen, Y., & Luo, X. (2016). Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes and Development, 30(8), 973–988. https://doi.org/10.1101/gad.276725.115.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, J. H., Viacava Follis, A., Kriwacki, R. W., & Moldoveanu, T. (2016). Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS Journal., 283(14), 2690–2700. https://doi.org/10.1111/febs.13527.

    Article  CAS  PubMed  Google Scholar 

  11. Gandhi, L., Camidge, D. R., De Oliveira, M. R., Bonomi, P., Gandara, D., Khaira, D., et al. (2011). Phase I study of navitoclax (ABT-263), a novel bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. Journal of Clinical Oncology, 29(7), 909–916. https://doi.org/10.1200/JCO.2010.31.6208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vaillant, F., Merino, D., Lee, L., Breslin, K., Pal, B., Ritchie, M. E., Smyth, G. K., Christie, M., Phillipson, L. J., Burns, C. J., Mann, G. B., Visvader, J. E., & Lindeman, G. J. (2013). Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell, 24(1), 120–129. https://doi.org/10.1016/j.ccr.2013.06.002.

    Article  CAS  PubMed  Google Scholar 

  13. Sarosiek, K. A., & Letai, A. (2016). Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using BH3 mimetics—recent successes, current challenges and future promise. FEBS Journal., 283(19), 3523–3533. https://doi.org/10.1111/febs.13714.

    Article  CAS  PubMed  Google Scholar 

  14. Zeitlin, B. D., Zeitlin, I. J., & Nör, J. E. (2008). Expanding circle of inhibition: small-molecule inhibitors of Bcl-2 as anticancer cell and antiangiogenic agents. Journal of Clinical Oncology., 26(25), 4180–4188. https://doi.org/10.1200/JCO.2007.15.7693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakajima, W., & Tanaka, N. (2016). BH3 mimetics: their action and efficacy in cancer chemotherapy. Integrative Cancer Science and Therapeutics, 3(3), 437–441. https://doi.org/10.15761/ICST.1000184.

    Article  Google Scholar 

  16. Chen, L., & Fletcher, S. (2017). Mcl-1 inhibitors: a patent review. Expert Opinion on Therapeutic Patents., 27(2), 163–178. https://doi.org/10.1080/13543776.2017.1249848.

    Article  CAS  PubMed  Google Scholar 

  17. Beekman, A. M., & Howell, L. A. (2016). Small-molecule and peptide inhibitors of the pro-survival protein Mcl-1. ChemMedChem, 11(8), 802–813. https://doi.org/10.1002/cmdc.201500497.

    Article  CAS  PubMed  Google Scholar 

  18. Tao, Z.-F., Hasvold, L., Wang, L., Wang, X., Petros, A. M., Park, C. H., Boghaert, E. R., Catron, N. D., Chen, J., Colman, P. M., Czabotar, P. E., Deshayes, K., Fairbrother, W. J., Flygare, J. A., Hymowitz, S. G., Jin, S., Judge, R. A., Koehler, M. F. T., Kovar, P. J., Lessene, G., Mitten, M. J., Ndubaku, C. O., Nimmer, P., Purkey, H. E., Oleksijew, A., Phillips, D. C., Sleebs, B. E., Smith, B. J., Smith, M. L., Tahir, S. K., Watson, K. G., Xiao, Y., Xue, J., Zhang, H., Zobel, K., Rosenberg, S. H., Tse, C., Leverson, J. D., Elmore, S. W., & Souers, A. J. (2014). Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Medicinal Chemistry Letters, 5(10), 1088–1093. https://doi.org/10.1021/ml5001867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rudin, C. M., Hann, C. L., Garon, E. B., Ribeiro De Oliveira, M., Bonomi, P. D., Camidge, D. R., et al. (2012). Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clinical Cancer Research, 18(11), 3163–3169. https://doi.org/10.1158/1078-0432.CCR-11-3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mason, K. D., Carpinelli, M. R., Fletcher, J. I., Collinge, J. E., Hilton, A. A., Ellis, S., Kelly, P. N., Ekert, P. G., Metcalf, D., Roberts, A. W., Huang, D. C. S., & Kile, B. T. (2007). Programmed anuclear cell death delimits platelet life span. Cell, 128(6), 1173–1186. https://doi.org/10.1016/j.cell.2007.01.037.

    Article  CAS  PubMed  Google Scholar 

  21. Stilgenbauer, S., Eichhorst, B., Schetelig, J., Coutre, S., Seymour, J. F., Munir, T., Puvvada, S. D., Wendtner, C. M., Roberts, A. W., Jurczak, W., Mulligan, S. P., Böttcher, S., Mobasher, M., Zhu, M., Desai, M., Chyla, B., Verdugo, M., Enschede, S. H., Cerri, E., Humerickhouse, R., Gordon, G., Hallek, M., & Wierda, W. G. (2017). Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. The Lancet Oncology, 17(6), 768–778. https://doi.org/10.1016/S1470-2045(16)30019-5.

    Article  CAS  Google Scholar 

  22. Roberts, A. W., Davids, M. S., Pagel, J. M., Kahl, B. S., Puvvada, S. D., Gerecitano, J. F., Kipps, T. J., Anderson, M. A., Brown, J. R., Gressick, L., Wong, S., Dunbar, M., Zhu, M., Desai, M. B., Cerri, E., Heitner Enschede, S., Humerickhouse, R. A., Wierda, W. G., & Seymour, J. F. (2016). Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. New England Journal of Medicine, 374(4), 311–322. https://doi.org/10.1056/NEJMoa1513257.

    Article  CAS  PubMed  Google Scholar 

  23. Stilgenbauer, S., Morschhauser, F., Wendtner, C.-M., Cartron, G., Hallek, M., Eichhorst, B. F., …, & Salles, G. (2016). Phase Ib study (GO28440) of venetoclax with bendamustine/rituximab or bendamustine/obinutuzumab in patients with relapsed/refractory or previously untreated chronic lymphocytic leukemia. Blood, 128(22), Abstract 4393. Retrieved from http://www.bloodjournal.org/content/128/22/4393.abstract.

  24. Stilgenbauer, S., Ilhan, O., Woszczyk, D., Renner, C., Mikuskova, E., Böttcher, S., et al. (2015). Safety and efficacy of obinutuzumab plus bendamustine in previously untreated patients with chronic lymphocytic leukemia: subgroup analysis of the green study. Blood, 126(23), 493–LP-493 Retrieved from http://www.bloodjournal.org/content/126/23/493.abstract.

    Google Scholar 

  25. Flinn, I. W., Gribben, J. G., Dyer, M. J. S., Wierda, W. G., Maris, M. B., Furman, R. R., et al. (2017). Safety, efficacy and MRD negativity of a combination of venetoclax and obinutuzumab in patients with previously untreated chronic lymphocytic leukemia—results from a phase 1b study (GP28331). Blood, 130(Suppl 1), 430–LP-430 Retrieved from http://www.bloodjournal.org/content/130/Suppl_1/430.abstract.

    Google Scholar 

  26. Seymour, J. F., Ma, S., Brander, D. M., Choi, M. Y., Barrientos, J., Davids, M. S., Anderson, M. A., Beaven, A. W., Rosen, S. T., Tam, C. S., Prine, B., Agarwal, S. K., Munasinghe, W., Zhu, M., Lash, L. L., Desai, M., Cerri, E., Verdugo, M., Kim, S. Y., Humerickhouse, R. A., Gordon, G. B., Kipps, T. J., & Roberts, A. W. (2017). Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study. The Lancet Oncology, 18(2), 230–240. https://doi.org/10.1016/S1470-2045(17)30012-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tse, C., Shoemaker, A. R., Adickes, J., et al. (2008). ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Research, 68(9), 3421–3428. https://doi.org/10.1158/0008-5472.CAN-07-5836.

    Article  CAS  PubMed  Google Scholar 

  28. Kelly, G. L., Grabow, S., Glaser, S. P., Fitzsimmons, L., Aubrey, B. J., Okamoto, T., Valente, L. J., Robati, M., Tai, L., Fairlie, W. D., Lee, E. F., Lindstrom, M. S., Wiman, K. G., Huang, D. C. S., Bouillet, P., Rowe, M., Rickinson, A. B., Herold, M. J., & Strasser, A. (2014). Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes and Development, 28(1), 58–70. https://doi.org/10.1101/gad.232009.113.

    Article  CAS  PubMed  Google Scholar 

  29. Glaser, S. P., Lee, E. F., Trounson, E., Bouillet, P., Wei, A., Fairlie, W. D., Izon, D. J., Zuber, J., Rappaport, A. R., Herold, M. J., Alexander, W. S., Lowe, S. W., Robb, L., & Strasser, A. (2012). Anti-apoptotic mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes and Development, 26(2), 120–125. https://doi.org/10.1101/gad.182980.111.

    Article  CAS  PubMed  Google Scholar 

  30. Gabellini, C., Trisciuoglio, D., & Del Bufalo, D. (2017). Non-canonical roles of Bcl-2 and Bcl-xL proteins: relevance of BH4 domain. Carcinogenesis, 38(6), 579–587. https://doi.org/10.1093/carcin/bgx016.

    Article  CAS  PubMed  Google Scholar 

  31. Monaco, G., Vervliet, T., Akl, H., & Bultynck, G. (2013). The selective BH4-domain biology of Bcl-2-family members: IP3Rs and beyond. Cellular and Molecular Life Sciences., 70(7), 1171–1183. https://doi.org/10.1007/s00018-012-1118-y.

    Article  CAS  PubMed  Google Scholar 

  32. Akl, H., Vervloessem, T., Kiviluoto, S., Bittremieux, M., Parys, J. B., De Smedt, H., & Bultynck, G. (2014). A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. Biochimica et Biophysica Acta - Molecular Cell Research., 1843(10), 2240–2252. https://doi.org/10.1016/j.bbamcr.2014.04.017.

    Article  CAS  Google Scholar 

  33. Liu, Z., Wild, C., Ding, Y., Ye, N., Chen, H., Wold, E. A., & Zhou, J. (2016). BH4 domain of Bcl-2 as a novel target for cancer therapy. Drug Discovery Today, 21(6), 989–996. https://doi.org/10.1016/j.drudis.2015.11.008.

    Article  CAS  PubMed  Google Scholar 

  34. Akl, H., Monaco, G., La Rovere, R., Welkenhuyzen, K., Kiviluoto, S., Vervliet, T., … & Bultynck, G. (2013). IP3R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP3R-derived peptide targeting the BH4 domain of Bcl-2. Cell Death and Disease, 4(5). doi:https://doi.org/10.1038/cddis.2013.140.

  35. Zhong, F., Harr, M. W., Bultynck, G., Monaco, G., Parys, J. B., De Smedt, H., et al. (2011). Induction of Ca2+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood, 117(10), 2924–2934. https://doi.org/10.1182/blood-2010-09-307405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Han, B., Park, D., Li, R., Xie, M., Owonikoko, T. K., Zhang, G., Sica, G. L., Ding, C., Zhou, J., Magis, A. T., Chen, Z. G., Shin, D. M., Ramalingam, S. S., Khuri, F. R., Curran, W. J., & Deng, X. (2015). Small-molecule Bcl2 BH4 antagonist for lung cancer therapy. Cancer Cell, 27(6), 852–863. https://doi.org/10.1016/j.ccell.2015.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deng, J., Park, D., Wang, M., Nooka, A., Deng, Q., Matulis, S., Kaufman, J., Lonial, S., Boise, L. H., Galipeau, J., & Deng, X. (2016). BCL2-BH4 antagonist BDA-366 suppresses human myeloma growth. Oncotarget, 7(19), 27753–27763. https://doi.org/10.18632/oncotarget.8513.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Greenberg, E. F., Lavik, A. R., & Distelhorst, C. W. (2014). Bcl-2 regulation of the inositol 1,4,5-trisphosphate receptor and calcium signaling in normal and malignant lymphocytes: potential new target for cancer treatment. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1843(10), 2205–2210. https://doi.org/10.1016/j.bbamcr.2014.03.008.

    Article  CAS  Google Scholar 

  39. Chattopadhyay, P., Chaudhury, P., & Wahi, A. K. (2010). Ca+2 concentrations are key determinants of ischemia-reperfusion-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. Applied Biochemistry and Biotechnology, 160(7), 1968–1977. https://doi.org/10.1007/s12010-009-8761-2.

    Article  CAS  PubMed  Google Scholar 

  40. Rong, Y.-P., Bultynck, G., Aromolaran, A. S., Zhong, F., Parys, J. B., De Smedt, H., et al. (2009). The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proceedings of the National Academy of Sciences, 106(34), 14397–14402. https://doi.org/10.1073/pnas.0907555106.

    Article  Google Scholar 

  41. Rong, Y. P., Barr, P., Yee, V. C., & Distelhorst, C. W. (2009). Targeting Bcl-2 based on the interaction of its BH4 domain with the inositol 1,4,5-trisphosphate receptor. Biochimica et Biophysica Acta - Molecular Cell Research., 1793(6), 971–978. https://doi.org/10.1016/j.bbamcr.2008.10.015.

    Article  CAS  Google Scholar 

  42. Lavik, A. R., Zhong, F., Chang, M.-J., Greenberg, E., Choudhary, Y., Smith, M. R., McColl, K. S., Pink, J., Reu, F. J., Matsuyama, S., & Distelhorst, C. W. (2015). A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget, 6(29), 27388–27402. https://doi.org/10.18632/oncotarget.4489.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Trisciuoglio, D., De Luca, T., Desideri, M., Passeri, D., Gabellini, C., Scarpino, S., et al. (2013). Removal of the BH4 domain from Bcl-2 protein triggers an autophagic process that impairs tumor growth. Neoplasia, 15(3), 315–IN37. https://doi.org/10.1593/neo.121392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deng, J., Park, D., Wang, M., Deng, Q., Matulis, S., Boise, L. H., & Deng, X. (2015). Small molecule BDA-366 as a BCL2-BH4 antagonist for multiple myeloma therapy. Blood, 126(23), 2049. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72172345%5Cn. http://www.bloodjournal.org/content/126/23/2049.

  45. Rady, I., Mohamed, H., Rady, M., Siddiqui, I. A., & Mukhtar, H. (2017). Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea. Egyptian Journal of Basic and Applied Sciences., 5(1), 1–23. https://doi.org/10.1016/J.EJBAS.2017.12.001.

    Article  Google Scholar 

  46. Zhao, L., Liu, S., Xu, J., Li, W., Duan, G., Wang, H., Yang, H., Yang, Z., & Zhou, R. (2017). A new molecular mechanism underlying the EGCG-mediated autophagic modulation of AFP in HepG2 cells. Cell Death and Disease, 8(11), e3160. https://doi.org/10.1038/cddis.2017.563.

    Article  CAS  PubMed  Google Scholar 

  47. Leone, M., Zhai, D., Sareth, S., Kitada, S., Reed, J. C., & Pellecchia, M. (2003). Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Research, 63(23), 8118–8121.

    CAS  PubMed  Google Scholar 

  48. Souers, A. J., Leverson, J. D., Boghaert, E. R., Ackler, S. L., Catron, N. D., Chen, J., Dayton, B. D., Ding, H., Enschede, S. H., Fairbrother, W. J., Huang, D. C. S., Hymowitz, S. G., Jin, S., Khaw, S. L., Kovar, P. J., Lam, L. T., Lee, J., Maecker, H. L., Marsh, K. C., Mason, K. D., Mitten, M. J., Nimmer, P. M., Oleksijew, A., Park, C. H., Park, C. M., Phillips, D. C., Roberts, A. W., Sampath, D., Seymour, J. F., Smith, M. L., Sullivan, G. M., Tahir, S. K., Tse, C., Wendt, M. D., Xiao, Y., Xue, J. C., Zhang, H., Humerickhouse, R. A., Rosenberg, S. H., & Elmore, S. W. (2013). ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nature Medicine, 19(2), 202–208. https://doi.org/10.1038/nm.3048.

    Article  CAS  PubMed  Google Scholar 

  49. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084.

    Article  CAS  PubMed  Google Scholar 

  50. Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen, M.-Y., …, & Sali, A. (2006). Comparative protein structure modeling using MODELLER. Current protocols in bioinformatics, Chapter 5, Unit-5.6. https://doi.org/10.1002/0471250953.bi0506s15.

  51. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeerschd, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(8), 17. https://doi.org/10.1186/1758-2946-4-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leverson J, & Abbott Laboratories. (2012). ABT-199, a selective small molecule inhibitor of Bcl-2, exhibits efficacy in Bcl-2 dependent malignancies while sparing platelets. Proceedings of AACR-NCI-EORTC Molecular Targets and Cancer Therapeutics meeting, Abstract 036. Retrieved from http://www.ecco-org.eu/Conferences/Conferences/EORTC_NCI_AACR-2012/Searchable-program.aspx#anchorScpr.

  54. Olotu, F. A., & Soliman, M. E. S. (2018). From mutational inactivation to aberrant gain-of-function: unraveling the structural basis of mutant p53 oncogenic transition. Journal of Cellular Biochemistry, 119(3), 2646–2652. https://doi.org/10.1002/jcb.26430.

    Article  CAS  PubMed  Google Scholar 

  55. Abdullahi, M., Olotu, F. A., & Soliman, M. E. (2018). Allosteric inhibition abrogates dysregulated LFA-1 activation: Structural insight into mechanisms of diminished immunologic disease. Computational Biology and Chemistry, 73, 49–56. https://doi.org/10.1016/j.compbiolchem.2018.02.002.

    Article  CAS  PubMed  Google Scholar 

  56. Ncube, N. B., Ramharack, P., & Soliman, M. E. S. (2018). An “all-in-one” pharmacophoric architecture for the discovery of potential broad-spectrum anti-flavivirus drugs. Applied Biochemistry and Biotechnology, pp. 1–16. https://doi.org/10.1007/s12010-017-2690-2.

  57. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general AMBER force field. Journal of Computational Chemistry, 25(9), 1157–1174.

    Article  CAS  PubMed  Google Scholar 

  58. Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The AMBER biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grest, G. S., & Kremer, K. (1986). Molecular dynamics simulation for polymers in the presence of a heat bath. Physical Review A, 33(5), 3628–3631. https://doi.org/10.1103/PhysRevA.33.3628.

    Article  CAS  Google Scholar 

  60. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118.

    Article  CAS  Google Scholar 

  61. Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5.

    Article  CAS  Google Scholar 

  62. Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p.

    Article  CAS  PubMed  Google Scholar 

  63. Seifert, E. (2014). OriginPro 9.1: scientific data analysis and graphing software—software review. Journal of Chemical Information and Modeling, 54(5), 1552. https://doi.org/10.1021/ci500161d.

    Article  CAS  PubMed  Google Scholar 

  64. Hou, T., Wang, J., Li, Y., Wang, W., Houa, T., Wangb, J., et al. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Computer Sciences, 51(1), 69–82. https://doi.org/10.1021/ci100275a.Assessing.

    Article  CAS  Google Scholar 

  65. Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kalra, P., Das, A., & Jayaram, B. (2002). Free-energy analysis of enzyme-inhibitor binding: aspartic proteinase-pepstatin complexes. Applied Biochemistry and Biotechnology, 96(1–3), 93–108. Retrieved from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11783905&retmode=ref&cmd=prlinks%5Cnfile:///_unknown_/Free-Energy Analysis of Enzyme-Inhibitor Binding - 0.pdf.

  67. Bös, F., & Pleiss, J. (2009). Multiple molecular dynamics simulations of TEM beta-lactamase: dynamics and water binding of the omega-loop. Biophysical Journal, 97(9), 2550–2558. https://doi.org/10.1016/j.bpj.2009.08.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mukherjee, J., & Gupta, M. N. (2015). Increasing importance of protein flexibility in designing biocatalytic processes. Biotechnology Reports, 6, 119–123. https://doi.org/10.1016/j.btre.2015.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Karshikoff, A., Nilsson, L., & Ladenstein, R. (2015). Rigidity versus flexibility: the dilemma of understanding protein thermal stability. FEBS Journal, 282(20), 3899–3917. https://doi.org/10.1111/febs.13343.

    Article  CAS  PubMed  Google Scholar 

  70. Craveur, P., Joseph, A. P., Esque, J., Narwani, T. J., & Noël, F., Shinada, N., … de Brevern, A. G. (2015). Protein flexibility in the light of structural alphabets. Frontiers in Molecular Biosciences, 2. https://doi.org/10.3389/fmolb.2015.00020.

  71. Wallnoefer, H. G., Lingott, T., Gutiérrez, J. M., Merfort, I., & Liedl, K. R. (2010). Backbone flexibility controls the activity and specificity of a protein-protein interface: Specificity in snake venom metalloproteases. Journal of the American Chemical Society, 132(30), 10330–10337. https://doi.org/10.1021/ja909908y.

    Article  CAS  PubMed  Google Scholar 

  72. Ali, S., Hassan, M., Islam, A., & Ahmad, F. (2014). A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Current Protein & Peptide Science, 15(5), 456–476. https://doi.org/10.2174/1389203715666140327114232.

    Article  CAS  Google Scholar 

  73. Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R., & Meiler, J. (2009). Solvent accessible surface area approximations for rapid and accurate protein structure prediction. Journal of Molecular Modeling, 15(9), 1093–1108. https://doi.org/10.1007/s00894-009-0454-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lobanov, M. I., Bogatyreva, N. S., & Galzitskaia, O. V. (2008). Radius of gyration is indicator of compactness of protein structure. Molekuliarnaia Biologiia, 42(4), 701–706. https://doi.org/10.1134/S0026893308040195.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their profound gratitude to the College of Health Sciences, University of KwaZulu-Natal, for providing financial and infrastructural support. Also, we appreciate the Center for High Performance Computing (CHPC, www.chpc.ac.za), Capetown, South Africa, for making computational resources available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. Soliman.

Ethics declarations

Conflict of Interest

The authors declare that they no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olotu, F.A., Agoni, C., Adeniji, E. et al. Probing Gallate-Mediated Selectivity and High-Affinity Binding of Epigallocatechin Gallate: a Way-Forward in the Design of Selective Inhibitors for Anti-apoptotic Bcl-2 Proteins. Appl Biochem Biotechnol 187, 1061–1080 (2019). https://doi.org/10.1007/s12010-018-2863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2863-7

Keywords

Navigation