Skip to main content
Log in

Effect of Particle Size on the Kinetics of Enzymatic Hydrolysis of Microcrystalline Cotton Cellulose: a Modeling and Simulation Study

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As the bioconversion of cellulosic substrate to fuels is essential to suppress the dependence on conventional fossil fuels, development of new improved bioprocess engineering techniques are requisite for fulfilling the rising demand of biofuels throughout the world. For this purpose, the effect of particle size on enzymatic hydrolysis of cotton cellulose has been explored in great detail. The model simulations for the enzymatic hydrolysis of microcrystalline cotton cellulose of different concentrations (0.25–20 mg/ml) were performed for the average particle size ranging from 0.78 to 25.52 μm. A highest glucose yield (99.8%) was observed for the smallest particle size of 0.78 μm in 50 h of enzymatic hydrolysis. Effect of inhibition (competitive and non-competitive) on glucose yield was analyzed through the incorporation of product inhibition in the kinetic model. The extent of cleaving of 1–4 glycosidic bonds by cellulase was quantified by degree of polymerization (DP) of cotton polymers which also indicates that faster scission of bonds can be observed under competitive inhibition and, hence, more glucose yield. The model simulations shows that particle size reduction may be useful for reducing the long residence time required for the hydrolysis step in the bioconversion of cellulose to ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wilson, D. B., & Walker, L. P. (1991). Enzymatic hydrolysis of cellulose: an overview. Bioresource Technology, 36, 3–14.

    Article  Google Scholar 

  2. Sinerio, J., Dominguez, H., Núńez, M. J., & Lema, J. M. (1995). Hydrolysis of microcrystalline cellulose by cellulolytic complex of Trichoderma reesei in low moisture media. Enzyme and Microbial Technology, 17(9), 809–815.

    Article  Google Scholar 

  3. Yeh, A., Huang, Y. C., & Chen, S. H. (2010). Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymers, 79(1), 192–199.

    Article  CAS  Google Scholar 

  4. Li, H., Ye, C., Liu, K., Gu, H., Du, W., & Bao, J. (2015). Analysis of particle size reduction on overall surface area and enzymatic hydrolysis yield of corn stover. Bioprocess and Biosystems Engineering, 38(1), 149–154.

    Article  CAS  Google Scholar 

  5. Chakraborty, S., Aniket, & Gaikwad, A. (2010). Mixing effects in cellulase mediated hydrolysis of cellulose for bio-ethanol production. Industrial and Engineering Chemistry Research, 49(21), 10818–10825.

    Article  CAS  Google Scholar 

  6. Gaikwad, A., & Chakraborty, S. (2013). Mixing effects on the kinetics of enzymatic hydrolysis of Avicel for batch production of cellulosic ethanol. Industrial and Engineering Chemistry Research, 52(11), 3988–3999.

    Article  CAS  Google Scholar 

  7. Lee, Y. Y., & Gupta, R. (2009). Mechanism of cellulase reaction on pure cellulosic substrate. Biotechnology and Bioengineering, 102(6), 1570–1581.

    Article  Google Scholar 

  8. Chakraborty, S., & Gaikwad, A. (2012). Production of cellulosic fuels. Proceedings of National Academy of Sciences, India, 82, 59–69.

    CAS  Google Scholar 

  9. Okazaki, M., & Moo-Young, M. (1978). Kinetics of enzymatic hydrolysis of cellulose: analytical description of mechanistic model. Biotechnology and Bioengineering, 20(5), 637–663.

    Article  CAS  Google Scholar 

  10. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813), 804–807.

    Article  CAS  Google Scholar 

  11. Klyosov, A. A. (1990). Trends in biochemistry and enzymology of cellulose degradation. Biochemistry, 29(47), 10577–10585.

    Article  CAS  Google Scholar 

  12. Zhang, Y. H., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase system. Biotechnology and Bioengineering, 88(7), 797–824.

    Article  CAS  Google Scholar 

  13. Bezerra, R. M. F., & Dias, A. A. (2004). Discrimination among eight modified Michealis−Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios. Applied Biochemistry and Biotechnology, 112(3), 173–184.

    Article  CAS  Google Scholar 

  14. Cowling, E. B. (1975). Physical and chemical constraints in hydrolysis of cellulose and lignocellulosic materials. Biotechnology and Bioengineering, 5, 163–181.

    CAS  Google Scholar 

  15. Yang, B., & Wyman, C. E. (2006). BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering, 94(4), 611–617.

    Article  CAS  Google Scholar 

  16. Liu, Y. S., Zeng, Y., Luo, Y., Xu, Q., Himmel, M. E., Smith, S. J., & Ding, S. Y. (2009). Does the cellulose-binding module move on the cellulose surface? Cellulose, 16(4), 587–597.

    Article  Google Scholar 

  17. Rivers, D. B., & Emert, G. H. (1988). Factors affecting the enzymatic hydrolysis of municipal solid waste components. Biotechnology and Bioengineering, 26, 278–281.

    Article  Google Scholar 

  18. Grethlein, H. E. (1985). The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nature Biotechnology, 3(2), 155–160.

    Article  CAS  Google Scholar 

  19. El-Sakhawy, M., & Hassan, M. L. (2007). Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers, 67(1), 1–10.

    Article  CAS  Google Scholar 

  20. Wen, Z., Liao, W., & Chen, S. (2004). Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresource Technology, 91(1), 31–39.

    Article  CAS  Google Scholar 

  21. Goel, S. C., & Ramachandran, K. B. (1983). Studies on the adsorption of cellulase on lignocellulosics. Journal of Fermentation Technology, 61(3), 281–286.

    CAS  Google Scholar 

  22. Peters, L. E., Walker, L. P., Wilson, D. B., & Irwin, D. C. (1991). The impact of initial particle size on the fragmentation of cellulose by the cellulase of Thermomonospora fusca. Bioresource Technology, 35(3), 313–319.

    Article  CAS  Google Scholar 

  23. Chang, V. S., Burr, B., & Holtzapple, M. T. (1997). Lime pretreatment of switchgrass. Applied Biochemistry and Biotechnology, 63–65, 3–19.

    Article  Google Scholar 

  24. Ramos, L. P., Nazhad, M. M., & Saddler, J. N. (1993). Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues. Enzyme and Microbial Technology, 15(10), 821–831.

    Article  CAS  Google Scholar 

  25. Dasari, R. K., & Berson, R. E. (2007). The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Applied Biochemistry and Biotechnology, 136–140, 289–299.

    Google Scholar 

  26. Millett, M. A., Baker, A. J., & Scatter, L. D. (1976). Physical and chemical pretreatment for enhancing cellulose saccharification. Biotechnology and Bioengineering Symposium, 6, 125–153.

    CAS  Google Scholar 

  27. Fan, L. T., Lee, Y., & Gharpuray, M. M. (1982). The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Advances in Biochemical Engineering, 23, 157–187.

    CAS  Google Scholar 

  28. Gan, Q., Allen, S. J., & Taylor, G. (2003). Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochemistry, 38(7), 1003–1018.

    Article  CAS  Google Scholar 

  29. Sangseethong, K., Meunier-Goddik, L., Tantasucharit, U., Liaw, E. T., & Penner, M. H. (1998). Rationale for particle size effect on rates of enzymatic saccharification of microcrystalline cellulose. Journal of Food Biochemistry, 22(4), 321–330.

    Article  CAS  Google Scholar 

  30. Zeng, M., Mosier, N. S., Huang, C. P., Sherman, D. M., & Ladisch, M. R. (2007). Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnology and Bioengineering, 97(2), 265–278.

    Article  CAS  Google Scholar 

  31. Johnston, D. B., Shoemaker, S. P., Smith, G. M., & Whitaker, J. R. (1998). Kinetic measurements of cellulase activity on insoluble substrates using disodium 2, 2́′bicinchoninate. Journal of Food Biochemistry, 22(4), 301–319.

    Article  CAS  Google Scholar 

  32. Whitaker, D. R. (1957). The mechanism of degradation of cellulose by Myrothecium Cellulase. Canadian Journal of Biochemistry and Physiology, 35(9), 733–742.

    Article  CAS  Google Scholar 

  33. Whitaker, D. R. (1954). Hydrolysis of a series of beta-1,4′-oligoglucosides by Myrothecium verrucaria cellulase. Archives of Biochemistry and Biophysics, 53(2), 439–449.

    Article  CAS  Google Scholar 

  34. Ghose, T. K., & Das, K. (1971). Advances in biochemical engineering, vol. 1. Berlin: Springer Verlag.

    Google Scholar 

  35. Trusek-Holownia, A., & Noworyta, A. (2015). A model for kinetics of enzymatic hydrolysis of biopolymers –a concept for determination of hydrolysate composition. Chemical Engineering and Processing: Process Intensification, 89, 54–61.

    Article  CAS  Google Scholar 

  36. Zhang, Y. H. P., & Lynd, L. R. (2005). Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules, 6(3), 1510–1515.

    Article  CAS  Google Scholar 

  37. Rezania, S., Ye, Z., & Berson, R. E. (2009). Enzymatic saccharification and viscosity of sawdust slurries following ultrasonic particle size reduction. Applied Biochemistry and Biotechnology, 153(1-3), 103–115.

    Article  CAS  Google Scholar 

  38. Lee, S., Teramoto, Y., & Endo, T. (2009). Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process: I: effect of additives with cellulose affinity. Bioresource Technology, 100(1), 275–279.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin Gaikwad.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, A. Effect of Particle Size on the Kinetics of Enzymatic Hydrolysis of Microcrystalline Cotton Cellulose: a Modeling and Simulation Study. Appl Biochem Biotechnol 187, 800–816 (2019). https://doi.org/10.1007/s12010-018-2856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2856-6

Keywords

Navigation