Skip to main content
Log in

Fabrication of a New Self-assembly Compound of CsTi2NbO7 with Cationic Cobalt Porphyrin Utilized as an Ascorbic Acid Sensor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel sandwich-structured nanocomposite based on Ti2NbO7 nanosheets and cobalt porphyrin (CoTMPyP) was fabricated through electrostatic interaction, in which CoTMPyP has been successfully inserted into the lamellar spacing of layered titanoniobate. The resultant Ti2NbO7/CoTMPyP nanocomposite was characterized by XRD, SEM, TEM, EDS, FT-IR, and UV-vis. It is demonstrated that the intercalated CoTMPyP molecules were found to be tilted approximately 63° against Ti2NbO7 layers. The glass carbon electrode (GCE) modified by Ti2NbO7/CoTMPyP film showed a fine diffusion-controlled electrochemical redox process. Furthermore, the Ti2NbO7/CoTMPyP-modified electrode exhibited excellent electrocatalytic oxidation activity of ascorbic acid (AA). Differential pulse voltammetric studies demonstrated that the intercalated nanocomposite detects AA linearly over a concentration range of 4.99 × 10−5 to 9.95 × 10−4 mol L−1 with a detection limit of 3.1 × 10−5 mol L−1 at a signal-to-noise ratio of 3.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu, X., Wei, S., Chen, S., Yuan, D., & Zhang, W. (2014). Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Applied Biochemistry and Biotechnology, 173(7), 1717–1726. https://doi.org/10.1007/s12010-014-0959-2

    Article  CAS  PubMed  Google Scholar 

  2. Liu, C., Han, R., Ji, H., Sun, T., Zhao, J., Chen, N., Chen, J., Guo, X., Hou, W., & Ding, W. (2016). S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity. Physical Chemistry Chemical Physics, 18(2), 801–810. https://doi.org/10.1039/C5CP06555K

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, X., Li, D., Yin, F., Gong, J., Yang, X., Tong, Z., & Xu, X. (2014). Characterization of a layered methylene blue/vanadium oxide nanocomposite and its application in a reagentless H2O2 biosensor. Applied Biochemistry and Biotechnology, 172(1), 176–187. https://doi.org/10.1007/s12010-013-0528-0

    Article  CAS  PubMed  Google Scholar 

  4. Zhai, Z., Hu, C., Yang, X., Zhang, L., Liu, C., Fan, Y., & Hou, W. (2012). Nitrogen-doped mesoporous nanohybrids of TiO2 nanoparticles and HTiNbO5 nanosheets with a high visible-light photocatalytic activity and a good biocompatibility. Journal of Materials Chemistry, 22(36), 19122–19131. https://doi.org/10.1039/c2jm32338a

    Article  CAS  Google Scholar 

  5. Zhai, Z., Huang, Y., Xu, L., Yang, X., Hu, C., Zhang, L., Fan, Y., & Hou, W. (2011). Thermostable nitrogen-doped HTiNbO5 nanosheets with a high visible-light photocatalytic activity. Nano Research, 4(7), 635–647. https://doi.org/10.1007/s12274-011-0119-8

    Article  CAS  Google Scholar 

  6. Liu, C., Sun, T., Wu, L., Liang, J., Huang, Q., Chen, J., & Hou, W. (2015). N-doped Na2Ti6O13@TiO2 core–shell nanobelts with exposed {1 0 1} anatase facets and enhanced visible light photocatalytic performance. Applied Catalysis B, 170, 17–24.

    Article  CAS  Google Scholar 

  7. Zhai, Z., Yang, X., Xu, L., Hu, C., Zhang, L., Hou, W., & Fan, Y. (2012). Novel mesoporous NiO/HTiNbO5 nanohybrids with high visible-light photocatalytic activity and good biocompatibility. Nanoscale, 4(2), 547–556. https://doi.org/10.1039/C1NR11091H

    Article  CAS  PubMed  Google Scholar 

  8. Hervieu, M., & Raveau, B. (1980). A layer structure: the titanoniobate CsTi2NbO7. Journal of Solid State Chemistry, 32(2), 161–165. https://doi.org/10.1016/0022-4596(80)90562-9

    Article  CAS  Google Scholar 

  9. Rebbah, H., Hervieu, M., & Raveau, B. (1981). The CsTi2NbO7 type layer oxides: ion exchange properties. Materials Research Bulletin, 16(2), 149–157. https://doi.org/10.1016/0025-5408(81)90075-1

    Article  CAS  Google Scholar 

  10. Dias, A. S., Lima, S., Carriazo, D., Rives, V., Pillinger, M., & Valente, A. A. (2006). Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural. Journal of Catalysis, 244(2), 230–237. https://doi.org/10.1016/j.jcat.2006.09.010

    Article  CAS  Google Scholar 

  11. Akatsuka, K., Takanashi, G., Ebina, Y., Haga, M. A., & Sasaki, T. (2012). Electronic band structure of exfoliated titanium-and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. The Journal of Physical Chemistry C, 116(23), 12426–12433. https://doi.org/10.1021/jp302417a

    Article  CAS  Google Scholar 

  12. Xie, K., Wei, W., & Yu, H. (2016). A novel layered titanoniobate as anode material for long-life sodium-ion batteries. RSC Advances, 6(42), 35746–35750. https://doi.org/10.1039/C6RA02530G

    Article  CAS  Google Scholar 

  13. Catti, M., Pinus, I., Ruffo, R., Salamone, M. M., & Mari, C. M. (2016). A novel layered lithium niobium titanate as battery anode material: crystal structure and charge-discharge properties. Solid State Ionics, 295, 72–77. https://doi.org/10.1016/j.ssi.2016.08.001

    Article  CAS  Google Scholar 

  14. Takagaki, A., Yoshida, T., Lu, D., Kondo, J. N., Hara, M., Domen, K., & Hayashi, S. (2004). Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts. Journal of Physical Chemistry B, 108(31), 11549–11555. https://doi.org/10.1021/jp049170e

    Article  CAS  Google Scholar 

  15. Tanaka, T., Fukuda, K., Ebina, Y., Takada, K., & Sasaki, T. (2004). Highly organized self-assembled monolayer and multilayer films of titania nanosheets. Advanced Materials, 16(11), 872–875. https://doi.org/10.1002/adma.200306470

    Article  CAS  Google Scholar 

  16. Liu, L., Ma, J., Shao, F., Zhang, D., Gong, J., & Tong, Z. (2012). A nanostructured hybrid synthesized by the intercalation of CoTMPyP into layered titanate: direct electrochemistry and electrocatalysis. Electrochemistry Communications, 24, 74–77. https://doi.org/10.1016/j.elecom.2012.08.021

    Article  CAS  Google Scholar 

  17. Ma, J., Yang, M., Chen, Y., Liu, L., Zhang, X., Wang, M., Zhang, D., & Tong, Z. (2015). Sandwich-structured composite from the direct coassembly of layered titanate nanosheets and Mn porphyrin and its electrocatalytic performance for nitrite oxidation. Materials Letters, 150, 122–125. https://doi.org/10.1016/j.matlet.2015.03.039

    Article  CAS  Google Scholar 

  18. Ma, J., Wu, J., Gu, J., Liu, L., Zhang, D., Xu, X., Yang, X., & Tong, Z. (2012). Fabrication and spectroscopic, electrochemical, and catalytic properties of a new intercalation compound of K4Nb6O17 with cationic cobalt porphyrin. Journal of Molecular Catalysis A: Chemical, 357, 95–100. https://doi.org/10.1016/j.molcata.2012.01.025

    Article  CAS  Google Scholar 

  19. Ma, J., Wu, J., Zheng, J., Liu, L., Zhang, D., Xu, X., Yang, X., & Tong, Z. (2012). Synthesis, characterization and electrochemical behavior of cationic iron porphyrin intercalated into layered niobate. Microporous and Mesoporous Materials, 151, 325–329. https://doi.org/10.1016/j.micromeso.2011.10.016

    Article  CAS  Google Scholar 

  20. Pan, B., Zhao, W., Zhang, X., Li, J., Xu, J., Ma, J., Liu, L., Zhang, D., & Tong, Z. (2016). Research on self-assembly of exfoliated perovskite nanosheets (LaNb2O7 ) and cobalt porphyrin utilized for electrocatalytic oxidation of ascorbic acid. RSC Advances, 6(52), 46388–46393. https://doi.org/10.1039/C6RA06429A

    Article  CAS  Google Scholar 

  21. Zhang, X., Liu, L., Ma, J., Yang, X., Xu, X., & Tong, Z. (2013). A novel metalloporphyrin intercalated layered niobate as an electrode modified material for detection of hydrogen peroxide. Materials Letters, 95, 21–24. https://doi.org/10.1016/j.matlet.2012.12.061

    Article  CAS  Google Scholar 

  22. Barnes, M. J. (1975). Function of ascorbic acid in collagen metabolism. Annals of the New York Academy of Sciences, 258(1 Second Confer), 264–277. https://doi.org/10.1111/j.1749-6632.1975.tb29287.x

    Article  CAS  PubMed  Google Scholar 

  23. Smith, A. R., Visioli, F., & Hagen, T. M. (2002). Vitamin C matters: increased oxidative stress in cultured human aortic endothelial cells without supplemental ascorbic acid. FASEB Journal, 16(9), 1102–1104. https://doi.org/10.1096/fj.01-0825fje

    Article  CAS  PubMed  Google Scholar 

  24. Kyaw, A. (1978). A simple colorimetric method for ascorbic acid determination in blood plasma. Clinica Chimica Acta, 86(2), 153–157. https://doi.org/10.1016/0009-8981(78)90128-6

    Article  CAS  Google Scholar 

  25. Marques, I. D. H. C., Marques, E. T. A., Silva, A. C., Ledingham, W. M., Melo, E. H. M., Da Silva, V. L., & Lima Filho, J. L. (1994). Ascorbic acid determination in biological fluids using ascorbate oxidase immobilized on alkylamine glass beads in a flow injection potentiometric system. Applied Biochemistry and Biotechnology, 44(1), 81–89. https://doi.org/10.1007/BF02921853

    Article  CAS  Google Scholar 

  26. Speek, A. J., Schrijver, J., & Schreurs, W. H. P. (1984). Fluorometric determination of total vitamin C in whole blood by high-performance liquid chromatography with pre-column derive atization. Journal of Chromatography, 305, 53–60. https://doi.org/10.1016/S0378-4347(00)83313-7

    Article  CAS  PubMed  Google Scholar 

  27. Sun, C., Lee, H., Yang, J., & Wu, C. (2011). The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosensors and Bioelectronics, 26(8), 3450–3455. https://doi.org/10.1016/j.bios.2011.01.023

    Article  CAS  PubMed  Google Scholar 

  28. Pournaghi-Azar, M. H., Razmi-Nerbin, H., & Hafezi, B. (2002). Amperometric determination of ascorbic acid in real samples using an aluminum electrode, modified with nickel hexacyanoferrate films by simple electroless dipping method. Electroanalysis, 14(3), 206–212. https://doi.org/10.1002/1521-4109(200202)14:3<206::AID-ELAN206>3.0.CO;2-M

    Article  CAS  Google Scholar 

  29. Deng, K., Zhou, J., & Li, X. (2013). Noncovalent nanohybrid of cobalt tetraphenylporphyrin with graphene for simultaneous detection of ascorbic acid, dopamine, and uric acid. Electrochimica Acta, 114, 341–346. https://doi.org/10.1016/j.electacta.2013.09.164

    Article  CAS  Google Scholar 

  30. Liu, X., Wei, S., Chen, S., Yuan, D., & Zhang, W. (2014). Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Applied Biochemistry and Biotechnology, 173(7), 1717–1726. https://doi.org/10.1007/s12010-014-0959-2

    Article  CAS  PubMed  Google Scholar 

  31. Vance Jr., T. B., & Seff, K. (1975). Hydrated and dehydrated crystal structures of seven-twelfths cesium-exchanged zeolite a. Journal of Physical Chemistry, 79, 2163–2167.

    Article  CAS  Google Scholar 

  32. Yao, K., Nishimura, S., Imai, Y., Wang, H., Ma, T., Abe, E., Tateyama, H., & Yamagishi, A. (2003). Spectroscopic and photoelectrochemical study of sensitized layered niobate K4Nb6O17. Langmuir, 19(2), 321–325. https://doi.org/10.1021/la026065s

    Article  CAS  Google Scholar 

  33. Machado, A. M., Wypych, F., Drechsel, S. M., & Nakagaki, S. (2002). Study of the catalytic behavior of montmorillonite/iron (III) and Mn (III) cationic porphyrins. Journal of Colloid and Interface Science, 254(1), 158–164. https://doi.org/10.1006/jcis.2002.8488

    Article  CAS  PubMed  Google Scholar 

  34. Halma, M., de Freitas Castro, K. A. D., Taviot-Gueho, C., Prévot, V., Forano, C., Wypych, F., & Nakagaki, S. (2008). Synthesis, characterization, and catalytic activity of anionic iron (III) porphyrins intercalated into layered double hydroxides. Journal of Catalysis, 257(2), 233–243. https://doi.org/10.1016/j.jcat.2008.04.026

    Article  CAS  Google Scholar 

  35. Chen, S., & Chiu, S. (2001). The catalytic and photocatalytic autoxidation of Sx 2− to SO4 2− by water-soluble cobalt porphyrin. Journal of Molecular Catalysis A: Chemical, 166(2), 243–253. https://doi.org/10.1016/S1381-1169(00)00471-4

    Article  CAS  Google Scholar 

  36. Ma, J., Jiang, H., Zhuo, N., Li, J., Lu, J., Gong, J., Xu, X., & Tong, Z. (2011). Fabrication of polypyrrole/layered niobate nanocomposite and its electrochemical behavior. Journal of Materials Science, 46(21), 6883–6888. https://doi.org/10.1007/s10853-011-5652-z

    Article  CAS  Google Scholar 

  37. Pisoschi, A. M., Pop, A., Serban, A. I., & Fafaneata, C. (2014). Electrochemical methods for ascorbic acid determination. Electrochimica Acta, 121, 443–460. https://doi.org/10.1016/j.electacta.2013.12.127

    Article  CAS  Google Scholar 

  38. Sternson, A. W., McCreery, R., Feinberg, B., & Adans, R. N. (1973). Electrochemical studies of adrenergic neurotrans-mitters and related compounds. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 46(2), 313–321. https://doi.org/10.1016/S0022-0728(73)80139-1

    Article  CAS  Google Scholar 

  39. Rusling, J. F., & Zuman, P. (1980). Effects of buffers on polarographic reduction of pyridinecarboxaldehydes. Analytical Chemistry, 52(13), 2209–2211. https://doi.org/10.1021/ac50063a049

    Article  CAS  Google Scholar 

  40. Qu, F., Li, N., & Jiang, Y. (1998). Electrochemical studies of NiTMPyP and interaction with DNA. Talanta, 45(5), 787–793. https://doi.org/10.1016/S0039-9140(97)00154-9

    Article  CAS  PubMed  Google Scholar 

  41. Harris, F. L., & Toppen, D. L. (1978). Kinetics and mechanism of reactions of water-soluble ferriporphyrins. 2. Reduction by ascorbic acid. Inorganic Chemistry, 17(1), 74–77. https://doi.org/10.1021/ic50179a016

    Article  CAS  Google Scholar 

  42. Deakin, M. R., Kovach, P. M., Stutts, K. J., & Wightman, R. M. (1986). Heterogeneous mechanisms of the oxidation of catechols and ascorbic acid at carbon electrodes. Analytical Chemistry, 58(7), 1474–1480. https://doi.org/10.1021/ac00298a046

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Natural Science Fund of Jiangsu Province (BK20161294), HHIT Research Project (Z2015011), Lianyungang Science Project (CG1602), and the Natural Science Foundation of Huaihai Institute of Technology (Z2014004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Tong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xu, J., Zhang, X. et al. Fabrication of a New Self-assembly Compound of CsTi2NbO7 with Cationic Cobalt Porphyrin Utilized as an Ascorbic Acid Sensor. Appl Biochem Biotechnol 185, 834–846 (2018). https://doi.org/10.1007/s12010-018-2701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2701-y

Keywords

Navigation