Skip to main content
Log in

Fermented Soybean Dregs by Neurospora crassa: a Traditional Prebiotic Food

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Soybean dregs fermented by Neurospora crassa is a typical traditional food in Gannan district of China. In this study, in vitro imitated gut fermentation was carried out to evaluate whether the oligosaccharides from this fermented soybean dregs had potential prebiotic properties. 11.91% of oligosaccharides were extracted from the fermented soybean dregs at the optimized condition which of 1:25 for ratio of soybean dregs (g) to 50% ethanol (ml), 90 min of extracted duration at 70 °C for twice. The soybean dreg oligosaccharides (SBOS) were progressively purified with Sevag method and on columns filled with AB-8 macroporous resin, and then identified as cellobiose by HPLC-ESI-MS and FT-IR. Oligosaccharides of soybean dregs with 800 mg/L significantly decreased pH value (p < 0.05) and ammonia N concentration (p < 0.05), and increased short chain fatty acid (SCFA) level (p < 0.05) in imitated gut fermentation compared with control group. It was shown that this fermented soybean dregs could be a potential prebiotic food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hayashi, S., Matsuzaki, K., Kawahara, T., Takasaki, Y., & Imada, K. (1992). Utilization of soybean residue for the production of beta-fructofuranosidase. Bioresource Technology, 41(3), 231–233.

    Article  CAS  Google Scholar 

  2. Aguirre, L., Garro, M. S., & Savoy de Giori, G. (2008). Enzymatic hydrolysis of soybean protein using lactic acid bacteria. Food Chemistry, 111(4), 976–982.

    Article  CAS  Google Scholar 

  3. Chen, Y., Ye, R., Yin, L., & Zhang, N. (2014). Novel blasting extrusion processing improved the physicochemical properties of soluble dietary fiber from soybean residue and in vivo evaluation. Journal of Food Engineering, 120, 1–8.

    Article  CAS  Google Scholar 

  4. Yan, J., & Yu, J. C. (2013). Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue. Food Chemistry Food Chemistry, 138, 884–889.

    Article  CAS  Google Scholar 

  5. Wu, J. H., Wu, Y., Yang, C. M., & Wang, Z. W. (2012). Enzymatic preparation and characterization of soybean oligosaccharides from Okara. Procedia Engineering, 37, 186–191.

    Article  CAS  Google Scholar 

  6. Shi, M., Yang, Y., Guan, D., Zhang, Y., & Zhang, Z. (2012). Bioactivity of the crude polysaccharides from fermented soybean curd dregs by Flammulina velutipes. Carbohydrate Polymers, 89(4), 1268–1276.

    Article  CAS  PubMed  Google Scholar 

  7. Poliseli-Scopel, F. H., Hernández-Herrero, M., Guamis, B., & Ferragut, V. (2012). Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT-Food Science and Technology, 46(1), 42–48.

    Article  CAS  Google Scholar 

  8. Gunny, A. A. N., Arbain, D., Gumba, R. E., et al. (2014). Potential halophilic cellulases for in situ enzymatic saccharification of ionic liquids pretreated lignocelluloses. Bioresource Technology, 155, 177–181.

    Article  CAS  PubMed  Google Scholar 

  9. Li, S., Wang, L., Song, C., Hu, X., Sun, H., Yang, Y., Lei, Z., & Zhang, Z. (2014). Utilization of soybean curd dregs for polysaccharides by Wolfiporia extensa (Peck) Ginns and the antioxidant activities in vitro. Journal of the Taiwan Institute of Chemical Engineers, 45(1), 6–11.

    Article  CAS  Google Scholar 

  10. Cho, K. M., Lee, J. H., Yun, H. D., Ahn, B. Y., Kim, H., & Seo, W. T. (2011). Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. Journal of Food Composition and Analysis, 24(3), 402–410.

    Article  CAS  Google Scholar 

  11. Ye, J., Li, J., et al. (2013). Study on the change of nutrition components in Neurospora crassa fermentation process of soybean dregs. Journal of Chinese Institute of Food Science and Technology, 13(12), 217–221 (In Chinese).

    CAS  Google Scholar 

  12. Roberfroid, M., Gibson, G. R., Hoyles, L., et al. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1–S63.

    Article  CAS  PubMed  Google Scholar 

  13. Vitali, B., Ndagijimana, M., Maccaferri, S., Biagi, E., Guerzoni, M. E., & Brigidi, P. (2012). An in vitro evaluation of the effect of probiotics and prebiotics on the metabolic profile of human microbiota. Anaerobe, 18(4), 386–391.

    Article  CAS  PubMed  Google Scholar 

  14. Macfarlane, S. M. G. T., Macfarlane, G. T., & Cummings, J. T. (2006). Prebiotics in the gastrointestinal tract. Alimentary Pharmacology & Therapeutics, 24(5), 701–714.

    Article  CAS  Google Scholar 

  15. Espinosa-Martos, I., & Rupérez, P. (2006). Soybean oligosaccharides. Potential as new ingredients in functional food. Nutricion Hospitalaria, 21(1).

  16. Lan, Y., Xun, S., Tamminga, S., Williams, B. A., Verstegen, M. W. A., & Erdi, G. (2004). Real-time based detection of lactic acid bacteria in caecal contents of E. tenella infected broilers fed soybean oligosaccharides and soluble soybean polysaccharides. Poultry Science, 83(10), 1696–1702.

    Article  CAS  PubMed  Google Scholar 

  17. Li, H. Y., Deng, Z. Y., et al. (2009). Study on the carotenoid produced in fermented soybean residue by Neurospora crassa. Science and Technology of Food Industry, 4, 160–162 (In Chinese).

  18. Barry, J. L., Hoebler, C., Macfarlane, G. T., et al. (1995). Estimation of the fermentability of dietary fibre in vitro: a European interlaboratory study. British Journal of Nutrition, 74(03), 303–322.

    Article  CAS  PubMed  Google Scholar 

  19. Yu, X. H., Wang, X., Yao, W., et al. (2008). In vitro fermentation of diets by faecal materials of pig fed fermented soybean meal. Animal Husbandry & Veterinary Medicine, 40(2), 8–11.

    CAS  Google Scholar 

  20. Li, W. K., Guo, F. C., Zhao, X. X., et al. (2007). In vitro fermentation characteristics of oligo- and poly-saccharides and their effects on chicken cecum microbial community. Chinese Journal of Animal Nutrition, 19(3), 277–282.

    CAS  Google Scholar 

  21. Malgozata, W., Mafia, S., Urszula, K., et al. (2005). In vitro fermentation of new modified starch preparations-changes of microstructure and bacterial end-products. Enzyme and Microbial Technology, 40, 93–99.

    Google Scholar 

  22. Tang, S. X., Huang, R. L., Tan, Z. L., et al. (2006). Study on in vitro fermentation characteristics of different species of oat straw. Journal of Guangxi Agricultural and Biological Science, 25(4), 330–335.

    CAS  Google Scholar 

  23. Mauricio, R. M., Mould, F. L., Dhanoa, M. S., Owen, E., Channa, K. S., & Theodorou, M. K. (1999). A semi-auto-mated in vitro gas production technique for ruminant feedstuff evaluation. Animal Feed Science and Technology, 79(4), 321–330.

    Article  Google Scholar 

  24. Schofield, P., Pitt, R. E., & Pell, A. N. (1994). Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science, 72(11), 2980–2980.

    Article  CAS  PubMed  Google Scholar 

  25. Broderick, G. A., & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63(1), 64–75.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, B., Prasad, K. N., Xie, H., Lin, S., & Jiang, Y. (2011). Structural characteristics of oligosaccharides from soy sauce lees and their potential prebiotic effect on lactic acid bacteria. Food Chemistry, 126(2), 590–594.

    Article  CAS  Google Scholar 

  27. Yoshida, T., Tsubaki, S., Teramoto, Y., & Azuma, J. I. (2010). Optimization of microwave-assisted extraction of carbohydrates from industrial waste of corn starch production using response surface methodology. Bioresource Technology, 101(20), 7820–7826.

    Article  CAS  PubMed  Google Scholar 

  28. Ekvall, J., Stegmark, R., & Nyman, M. (2007). Optimization of extraction methods for determination of the raffinose family oligosaccharides in leguminous vine peas (Pisum sativum L.) and effects of blanching. Journal of Food Composition and Analysis, 20(1), 13–18.

    Article  CAS  Google Scholar 

  29. Zhang, H. L., Cui, S. H., Zha, X. Q., Bansal, V., Xue, L., Li, X. L., Hao, R., Pan, L. H., & Luo, J. P. (2014). Jellyfish skin polysaccharides: extraction and inhibitory activity on macrophage-derived foam cell formation. Carbohydrate Polymers, 106, 393–402.

    Article  CAS  PubMed  Google Scholar 

  30. Xi, L., Mu, T., & Sun, H. (2015). Preparative purification of polyphenols from sweet potato (Ipomoea batatas L.) leaves by AB-8 macroporous resins. Food Chemistry, 172, 166–174.

    Article  CAS  PubMed  Google Scholar 

  31. Jha, R., Bindelle, J., Rossnagel, B., van Kessel, A., & Leterme, P. (2011). In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs. Animal Feed Science and Technology, 163(2), 185–193.

    Article  CAS  Google Scholar 

  32. Rink, F., Bauer, E., Eklund, M., Hartung, K., & Mosenthin, R. (2011). Use of an in vitro gas production method to assess differences in microbial fermentation characteristics of feed ingredients and betaine additives for pig nutrition. Animal Feed Science and Technology, 169(3), 281–285.

    Article  CAS  Google Scholar 

  33. Haddi, M. L., Filacorda, S., Meniai, K., Rollin, F., & Susmel, P. (2003). In vitro fermentation kinetics of some halophyte shrubs sampled at three stages of maturity. Animal Feed Science and Technology, 104(1), 215–225.

    Article  Google Scholar 

  34. Beards, E., Tuohy, K., & Gibson, G. (2010). Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe, 16(4), 420–425.

    Article  CAS  PubMed  Google Scholar 

  35. Pedreschi, R., Campos, D., Noratto, G., Chirinos, R., & Cisneros-Zevallos, L. (2003). Andean yacon root (Smallanthus sonchifolius Poepp. Endl) fructooligosaccharides as a potential novel source of prebiotics. Journal of Agricultural and Food Chemistry, 51(18), 5278–5284.

    Article  CAS  PubMed  Google Scholar 

  36. Van der Meulen, R., Avonts, L., & De Vuyst, L. (2004). Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Applied and Environmental Microbiology, 70(4), 1923–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Min, F. F., Hu, J. L., Nie, S. P., Xie, J. H., & Xie, M. Y. (2014). In vitro fermentation of the polysaccharides from Cyclocarya paliurusleaves by human fecal inoculums. Carbohydrate Polymers, 112, 563–568.

    Article  CAS  PubMed  Google Scholar 

  38. Mikkelsen, L. L., Knudsen, K. E. B., & Jensen, B. B. (2004). In vitro fermentation of fructo-oligosaccharides and transgalacto-oligosaccharides by adapted and unadapted bacterial populations from the gastrointestinal tract of piglets. Animal Feed Science and Technology, 116(3), 225–238.

    Article  CAS  Google Scholar 

  39. Lan, Y., Williams, B. A., Tamminga, S., et al. (2005). In vitro fermentation kinetics of some non-digestible carbohydrates by the caecal microbial community of broilers. Animal Feed Science and Technology, 123, 687–702.

    Article  CAS  Google Scholar 

  40. Kihara, M., & Sakata, T. (2002). Production of short-chain fatty acids and gas from various oligosaccharides by gut microbes of carp (Cyprinus carpio L.) in micro-scale batch culture. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132(2), 333–340.

    Article  Google Scholar 

  41. Wisker, E., Knudsen, K. E. B., Daniel, M., Eggum, B. O., & Feldheim, W. (1997). Energy values of non-starch polysaccharides: Comparative studies in humans and rats. The Journal of Nutrition, 127(1), 108–116.

    Article  CAS  PubMed  Google Scholar 

  42. Cummings, J. H., Rombeau, J. L., & Sakata, T. (1995). Physiological and clinical aspects of short chain fatty acids (Vol. 38, pp. 156–157). Cambridge: Cambridge University Press.

    Google Scholar 

  43. Lan, Y., Williams, B. A., Verstegen, M. W. A., Patterson, R., & Tamminga, S. (2007). Soy oligosaccharides in vitro fermentation characteristics and its effect on caecal microorganisms of young broiler chickens. Animal Feed Science and Technology, 133(3), 286–297.

    Article  CAS  Google Scholar 

  44. Lupton, J. R., & Kurtz, P. P. (1993). Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. The Journal of Nutrition, 123(9), 1522–1530.

    Article  CAS  PubMed  Google Scholar 

  45. Snelders, J., Olaerts, H., Dornez, E., van de Wiele, T., Aura, A. M., Vanhaecke, L., Delcour, J. A., & Courtin, C. M. (2014). Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. Journal of Functional Foods, 10, 1–12.

    Article  CAS  Google Scholar 

  46. Jonathan, M. C., van den Borne, J. J. G. C., van Wiechen, P., Souza da Silva, C., Schols, H. A., & Gruppen, H. (2012). In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chemistry, 133(3), 889–897.

    Article  CAS  Google Scholar 

  47. Chen, W. J. L., Anderson, J. W., & Jennings, D. (1984). Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats. Experimental Biology and Medicine, 175(2), 215–218.

    Article  CAS  Google Scholar 

  48. Williams, E. A., Coxhead, J. M., & Mathers, J. C. (2003). Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms. Proceedings of the Nutrition Society, 62(01), 107–115.

    Article  CAS  PubMed  Google Scholar 

  49. Monsma, D. J., & Marlett, J. A. (1995). Rat cecal inocula produce different patterns of short-chain fatty acids than fecal inocula in in vitro fermentations. The Journal of Nutrition, 125(10), 2463–2470.

    CAS  PubMed  Google Scholar 

  50. Yang, H. J., Cao, Y. C., & Zhang, D. F. (2010). Caecal fermentation patterns in vitro of glucose, cellobiose, microcrystalline cellulose and NDF separated from alfalfa hay in the adult rabbit. Animal Feed Science and Technology, 162(3), 149–154.

    Article  CAS  Google Scholar 

  51. Wang, J., Sun, B. G., Cao, Y. P., et al. (2010). In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by bifidobacteria. Carbohydrate Polymers, 82(2), 419–423.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Foundation of China (31660447), Natural Science Foundation of Jiangxi Province (20161BAB204170, 20152ACB20001), Outstanding talent project of Jiangxi Province (20171BCB23024) and Project of Education Department of Jiangxi Province (GJJ150186), and technology support of State Key Lab of Food Science and Technology of Nanchang University (SKLF-KF-201418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Ren, Z., Ye, J. et al. Fermented Soybean Dregs by Neurospora crassa: a Traditional Prebiotic Food. Appl Biochem Biotechnol 189, 608–625 (2019). https://doi.org/10.1007/s12010-018-02931-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-02931-w

Keywords

Navigation