Skip to main content
Log in

Polyesters from Macrolactones Using Commercial Lipase NS 88011 and Novozym 435 as Biocatalysts

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The demand for environmentally friendly products allied with the depletion of natural resources has increased the search for sustainable materials in chemical and pharmaceutical industries. Polyesters are among the most widely used biodegradable polymers in biomedical applications. In this work, aliphatic polyesters (from globalide and ω-pentadecalactone) were synthesized using a new commercial biocatalyst, the low-cost immobilized NS 88011 lipase (lipase B from Candida antarctica immobilized on a hydrophobic support). Results were compared with those obtained under the same conditions using a traditional, but more expensive, commercial biocatalyst, Novozym 435 (lipase B from C. antarctica immobilized on Lewatit VP OC). When NS 88011 was used in the polymerization of globalide, longer reaction times (240 min)—when compared to Novozym 435—were required to obtain high yields (80–90 wt%). However, higher molecular weights were achieved. When poly(ω-pentadecalactone) was synthesized, high yields and molecular weights (130,000 g mol−1) were obtained and the enzyme concentration showed strong influence on the polyester properties. This is the first report describing NS 88011 in polymer synthesis. The use of this cheaper enzymatic preparation can provide an alternative for polyester synthesis via enzymatic ring-opening polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sun, Y., Yang, Y., Wang, C., Liu, J., Shi, W., Zhu, X., Lu, L., & Li, Q. (2013). Applied Biochemistry and Biotechnology, 170(2), 399–405. https://doi.org/10.1007/s12010-013-0152-z.

    Article  CAS  Google Scholar 

  2. Knani, D., Gutman, A. L., & Kohn, D. H. (1993). Journal of Polymer Science, Part A: Polymer Chemistry, 31(5), 1221–1232. https://doi.org/10.1002/pola.1993.080310518.

    Article  CAS  Google Scholar 

  3. Uyama, H., Takeya, K., & Kobayashi, S. (1993). Proceedings of the Japan Academy Series B—Physical and Biological Sciences, 69 (8):203–207. doi:https://doi.org/10.2183/pjab.69.203.

  4. Bisht, K. S., Henderson, L. A., Gross, R. A., Kaplan, D. L., & Swift, G. (1997). Macromolecules, 30, 2705–2711.

    Article  CAS  Google Scholar 

  5. Van Der Meulen, I., De Geus, M., Antheunis, H., Deumens, R., Joosten, E. a. J., Koning, C. E., & Heise, A. (2008). Biomacromolecules, 9(12), 3404–3410. https://doi.org/10.1021/bm800898c.

    Article  Google Scholar 

  6. Polloni, A. E., Veneral, J. G., Rebelatto, E. A., de Oliveira, D., Oliveira, J. V., Araújo, P. H. H., & Sayer, C. (2016). The Journal of Supercritical Fluids, 119, 221–228. https://doi.org/10.1016/j.supflu.2016.09.019.

    Article  Google Scholar 

  7. Kraft, P., & Eichenberger, W. (2004). European Journal of Organic Chemistry, 2004(2), 354–365. https://doi.org/10.1002/ejoc.200300578.

    Article  Google Scholar 

  8. McGinty, D., Letizia, C. S., & Api, A. M. (2011). Food and Chemical Toxicology, 49(2), S193–S201. https://doi.org/10.1016/j.fct.2007.09.060.

    Article  CAS  Google Scholar 

  9. de Geus, M., van der Meulen, I., Goderis, B., van Hecke, K., Dorschu, M., van der Werff, H., Koning, C. E., & Heise, A. (2010). Polymer Chemistry, 1(4), 525. https://doi.org/10.1039/b9py00360f.

    Article  Google Scholar 

  10. Cai, J., Liu, C., Cai, M., Zhu, J., Zuo, F., Hsiao, B. S., & Gross, R. A. (2010). Polymer, 51(5), 1088–1099. https://doi.org/10.1016/j.polymer.2010.01.007.

    Article  CAS  Google Scholar 

  11. Cai, J., Hsiao, B. S., & Gross, R. A. (2009). Polymer International, 58(8), 944–953. https://doi.org/10.1002/pi.2624.

    Article  CAS  Google Scholar 

  12. Liu, J., Jiang, Z., Zhang, S., & Saltzman, W. M. (2009). Biomaterials, 30(29), 5707–5719. https://doi.org/10.1016/j.biomaterials.2009.06.061.

    Article  CAS  Google Scholar 

  13. Korzhikov, V. A., Gusevskaya, K. V., Litvinchuk, E. N., Vlakh, E. G., & Tennikova, T. B. (2013). International Journal of Polymer Science, 2013, 1–10. https://doi.org/10.1155/2013/476748.

    Article  Google Scholar 

  14. Fernández, J., Etxeberria, A., Varga, A. L., & Sarasua, J. R. (2015). Polymer (United Kingdom), 81, 12–22. https://doi.org/10.1016/j.polymer.2015.11.001.

    Google Scholar 

  15. Duda, A., Kowalski, A., Penczek, S., Uyama, H., & Kobayashi, S. (2002). Macromolecules, 35(11), 4266–4270. https://doi.org/10.1021/ma012207y.

    Article  CAS  Google Scholar 

  16. Johnson, P. M., Kundu, S., & Beers, K. L. (2011). Biomacromolecules, 12(9), 3337–3343. https://doi.org/10.1021/bm2009312.

    Article  CAS  Google Scholar 

  17. Kobayashi, S. (2015). Polymers for Advanced Technologies, 26(7), 677–686. https://doi.org/10.1002/pat.3564.

    Article  CAS  Google Scholar 

  18. Loos, K. (2010). Biocatalysis in polymer chemistry (2nd ed.). Weinheim: Wiley VCH.

    Book  Google Scholar 

  19. Dubois, P., Coulembier, O., & Raquez, J.-M. (2009). Handbook of ring-opening polymerization. Polyesters from large lactones, (227–254).

  20. Yang, Y., Yu, Y., Zhang, Y., Liu, C., Shi, W., & Li, Q. (2011). Process Biochemistry, 46(10), 1900–1908. https://doi.org/10.1016/j.procbio.2011.07.016.

    Article  CAS  Google Scholar 

  21. Miletić, N., Nastasović, A., & Loos, K. (2012). Bioresource Technology, 115, 126–135. https://doi.org/10.1016/j.biortech.2011.11.054.

    Article  Google Scholar 

  22. Shoda, S., Uyama, H., Kadokawa, J., Kimura, S., & Kobayashi, S. (2016). Chemical Reviews, 116(4), 2307–2413. https://doi.org/10.1021/acs.chemrev.5b00472.

    Article  CAS  Google Scholar 

  23. Kirk, O., & Christensen, M. W. (2002). Organic Process Research and Development, 6(4), 446–451. https://doi.org/10.1021/op0200165.

    Article  CAS  Google Scholar 

  24. Zanetti, M., Carniel, T. K., Valério, A., de Oliveira, J. V., de Oliveira, D., Araújo, P., Araújo, H. H., Riella, H. G., & Fiori, M. A. (2017). Journal of Chemical Technology and Biotechnology, 92(1), 115–121. https://doi.org/10.1002/jctb.4998.

    Article  CAS  Google Scholar 

  25. Kamal, Z., Yedavalli, P., Deshmukh, M. V., & Rao, N. M. (2013). Protein Science, 22(7), 904–915. https://doi.org/10.1002/pro.2271.

    Article  CAS  Google Scholar 

  26. Oliveira, D., Feihrmann, A. C., Rubira, A. F., Kunita, M. H., Dariva, C., & Oliveira, J. V. (2006). Journal of Supercritical Fluids, 38(3), 373–382. https://doi.org/10.1016/j.supflu.2005.12.007.

    Article  CAS  Google Scholar 

  27. Chiaradia, V., Soares, N. S., Valério, A., de Oliveira, D., Araújo, P. H. H., & Sayer, C. (2016). Applied Biochemistry and Biotechnology, 1, 1–18. https://doi.org/10.1007/s12010-016-2116-6.

    Google Scholar 

  28. Namekawa, S., Uyama, H., & Kobayashi, S. (1998). Polymer Journal, 30(3), 269–271.

    Article  CAS  Google Scholar 

  29. Kumar, A., Kalra, B., Dekhterman, A., & Gross, R. A. (2000). Macromolecules, 33, 6303–6309. https://doi.org/10.1021/ma000344+.

    Article  CAS  Google Scholar 

  30. Focarete, M. L., Scandola, M., Kumar, A., & Gross, R. a. (2001). Journal of Polymer Science Part B: Polymer Physics, 39, 1721–1729. https://doi.org/10.1002/polb.1145.

    Article  CAS  Google Scholar 

  31. Kumar, A., & Gross, R. A. (2000). Journal of the American Chemical Society, 122(48), 11767–11770. https://doi.org/10.1021/ja002915j.

    Article  CAS  Google Scholar 

  32. van der Mee, L., Helmich, F., de Bruijn, R., Vekemans, J. a. J. M., Palmans, A. R. a., & Meijer, E. W. (2006). Macromolecules, 39(15), 5021–5027. https://doi.org/10.1021/ma060668j.

    Article  Google Scholar 

  33. Simpson, N., Takwa, M., & Hult, K. (2008). Macromolecular Symposia, 41, 3613–3619.

    Article  CAS  Google Scholar 

  34. Wilson, J. A., Hopkins, S. A., Wright, P. M., & Dove, A. P. (2015). Macromolecules, 48(4), 950–958. https://doi.org/10.1021/ma5022049.

    Article  CAS  Google Scholar 

  35. Polloni, A. E., Rebelatto, E. A., Veneral, J. G., de Oliveira, D., Oliveira, J. V., Araújo, P. H. H., & Sayer, C. (2017). Journal of Polymer Science Part A: Polymer Chemistry, 55, 1219–1227. https://doi.org/10.1002/pola.28486.

    Article  CAS  Google Scholar 

  36. Panlawan, P., Luangthongkam, P., Wiemann, L. O., Sieber, V., Marie, E., Durand, A., & Inprakhon, P. (2013). Journal of Molecular Catalysis B: Enzymatic, 88, 69–76. https://doi.org/10.1016/j.molcatb.2012.11.008.

    Article  CAS  Google Scholar 

  37. Målberg, S., Finne-Wistrand, A., & Albertsson, A. C. (2010). Polymer, 51(23), 5318–5322. https://doi.org/10.1016/j.polymer.2010.09.016.

    Article  Google Scholar 

  38. Taden, A., Antonietti, M., & Landfester, K. (2003). Macromolecular Rapid Communications, 24(8), 512–516. https://doi.org/10.1002/marc.200390079.

    Article  CAS  Google Scholar 

  39. Zhou, X., Cai, Q., Yan, N., Deng, X., & Yang, X. (2010). Journal of Biomedical Materials Research—Part A, 95(3), 755–765. https://doi.org/10.1002/jbm.a.32896.

    Article  Google Scholar 

  40. Pamula, E., Dobrzynski, P., Bero, M., & Paluszkiewicz, C. (2005). Journal of Molecular Structure, 744–747(1), 557–562. https://doi.org/10.1016/j.molstruc.2004.11.016.

    Article  Google Scholar 

  41. Thurecht, K. J., Heise, A., Degeus, M., Villarroya, S., Zhou, J., Wyatt, M. F., & Howdle, S. M. (2006). Macromolecules, 39(23), 7967–7972. https://doi.org/10.1021/ma061310q.

    Article  CAS  Google Scholar 

  42. Ates, Z., Thornton, P. D., & Heise, A. (2011). Polymer Chemistry, 2(2), 309–312. https://doi.org/10.1039/c0py00294a.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the financial support and Novozymes® and Symrise Aromas e Fragrâncias LTDA for the kindly provided enzymes and macrolactone globalide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Sayer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polloni, A.E., Chiaradia, V., Figura, E.M. et al. Polyesters from Macrolactones Using Commercial Lipase NS 88011 and Novozym 435 as Biocatalysts. Appl Biochem Biotechnol 184, 659–672 (2018). https://doi.org/10.1007/s12010-017-2583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2583-4

Keywords

Navigation