Skip to main content
Log in

Improved Treatment and Utilization of Rice Straw by Coprinopsis cinerea

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As one of the most abundant renewable resources, rice straw is an attractive lignocellulosic material for animal feeding or for the production of biochemical. An appropriate pre-treatment technique is essential for converting rice straw to rich fodder or biofuel. Based on previous work, Coprinopsis cinerea can grow on rice straw medium and therefore it is useful for the treatment of rice straw. However, little is known regarding its degradation systems and nutrition values. In this study, we firstly found that C. cinerea could grow rapidly on rice straw without any additives by the production of a series of enzymes (laccase, cellulase, and xylanase) and that the microstructure and contents of rice straw changed significantly after being treated by C. cinerea. We propose that a possible underlying mechanism exists in the degradation. Moreover, C. cinerea has a high nutrition value (23.5% crude protein and 22.2% total amino acids). Hence, fermented rice straw with mycelium could be a good animal feedstuff resource instead of expensive forage. The direct usage of C. cinerea treatment is expected to be a practical, cost-effective, and environmental-friendly approach for enhancing the nutritive value and digestibility of rice straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Bioethanol production from rice straw: an overview. Bioresource Technology, 101, 4767–4774.

    Article  CAS  Google Scholar 

  2. Mussatto, S. I., & Roberto, I. C. (2004). Optimal experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production. Biotechnology Progress, 20, 134–139.

    Article  CAS  Google Scholar 

  3. Akinfemi, A., & Ogunwole, O. (2012). Chemical composition and in vitro digestibility of rice straw treated wih Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus tuber-regium. Slovak Journal of Animal Science, 45, 14–20.

    Google Scholar 

  4. Lim, J. S., Manan, Z. A., Alwi, S. R. W., & Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16, 3084–3094.

    Article  CAS  Google Scholar 

  5. Yoswathana, N., Phuriphipat, P., Treyawutthiwat, P., & Eshtiaghi, M. N. (2010). Bioethanol production from rice straw. Energy Research Journal, 1, 26.

    Article  Google Scholar 

  6. Alemahdi, N., Man, H. C., Abd Rahman, N., Nasirian, N., & Yang, Y. (2015). Enhanced mesophilic bio-hydrogen production of raw rice straw and activated sewage sludge by co-digestion. International Journal of Hydrogen Energy, 40, 16033–16044.

    Article  CAS  Google Scholar 

  7. Kim, J. H., Block, D. E., Shoemaker, S. P., & Mills, D. A. (2010). Conversion of rice straw to bio-based chemicals: an integrated process using Lactobacillus brevis. Applied Microbiology and Biotechnology, 86, 1375–1385.

    Article  CAS  Google Scholar 

  8. Van Soest, P. J. (2006). Rice straw, the role of silica and treatments to improve quality. Animal Feed Science and Technology, 130, 137–171.

    Article  Google Scholar 

  9. Malik, K., Tokkas, J., & Kumari, R. C. A. A. N. (2015). Pretreated rice straw as an improved fodder for ruminants—an overview. Journal of Applied and Natural Science., 7, 514–520.

    Google Scholar 

  10. Ghasemi, E., Khorvash, M., Ghorbani, G. R., Emami, M. R., & Karimi, K. (2013). Dry chemical processing and ensiling of rice straw to improve its quality for use as ruminant feed. Tropical Animal Health and Production, 45, 1215–1221.

    Article  Google Scholar 

  11. van Kuijk, S. J. A., Sonnenberg, A. S. M., Baars, J. J. P., Hendriks, W. H., & Cone, J. W. (2015). Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. Biotechnology Advances, 33, 191–202.

    Article  Google Scholar 

  12. Kues, U. (2000). Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiology and Molecular Biology Reviews, 64, 316.

    Article  CAS  Google Scholar 

  13. Zhou, Y., Zhang, W., Liu, Z., Wang, J., & Yuan, S. (2015). Purification, characterization and synergism in autolysis of a group of 1,3-beta-glucan hydrolases from the pilei of Coprinopsis cinerea fruiting bodies. Microbiology, 161, 1978–1989.

    Article  CAS  Google Scholar 

  14. Moore, D., & Pukkila, P. J. (1985). Coprinus cinereus—an ideal organism for studies of genetics and developmental biology. Journal of Biological Education, 19, 31–40.

    Article  Google Scholar 

  15. Mcdermid, K. P., Forsberg, C. W., & Mackenzie, C. R. (1990). Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Applied and Environmental Microbiology, 56, 3805–3810.

    CAS  Google Scholar 

  16. Songulashvili, G., Elisashvili, V., Wasser, S. P., Nevo, E., & Hadar, Y. (2007). Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme and Microbial Technology, 41, 57–61.

    Article  CAS  Google Scholar 

  17. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  18. Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities. Methods in Enzymology, 160, 87–112.

    Article  CAS  Google Scholar 

  19. Zhang, W., Kang, L., Yang, M., Zhou, Y., Wang, J., Liu, Z., & Yuan, S. (2016). Purification, characterization and function analysis of an extracellular beta-glucosidase from elongating stipe cell walls in Coprinopsis cinerea. FEMS Microbiology Letters, 363, fnw120.

    Article  Google Scholar 

  20. Tabka, M. G., Herpoel-Gimbert, I., Monod, F., Asther, M., & Sigoillot, J. C. (2006). Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme and Microbial Technology, 39, 897–902.

    Article  CAS  Google Scholar 

  21. Vansoest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.

    Article  CAS  Google Scholar 

  22. AOAC. (1990). Official methods of analysis. Washington DC: Association of Official Analytical Chemists.

    Google Scholar 

  23. Nageh, A., El-masry, T., Elsayad, M., Shimaa, M. E., Sally, E., & Karima, I. (2015). Effects of rice straw burning products on guinea pig lungs. African Journal of Pharmacy and Pharmacology, 9, 645–661.

    Article  Google Scholar 

  24. Zhang, W. M., Wu, X. X., Zhou, Y. J., Liu, Z. H., Zhang, W., Niu, X., Zhao, Y., Pei, S. Y., Zhao, Y., & Yuan, S. (2014). Characterization of stipe elongation of the mushroom Coprinopsis cinerea. Microbiology, 160, 1893–1902.

    Article  CAS  Google Scholar 

  25. Liu, Z. H., Niu, X., Wang, J., Zhang, W. M., Yang, M. M., Liu, C. C., Xiong, Y. J., Zhao, Y., Pei, S. Y., Qin, Q., Zhang, Y., Yu, Y., & Yuan, S. (2015). Comparative study of nonautolytic mutant and wild-type strains of Coprinopsis cinerea supports an important role of glucanases in fruiting body autolysis. Journal of Agricultural and Food Chemistry, 63, 9609–9614.

    Article  CAS  Google Scholar 

  26. Jalc, D., Nerud, F., & Siroka, P. (1998). The effectiveness of biological treatment of wheat straw by white-rot fungi. Folia Microbiologica, 43, 687–689.

    Article  CAS  Google Scholar 

  27. Reddy, G. V., Babu, P. R., Komaraih, P., Roy, K. R. R. M., & Kothari, I. L. (2003). Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajorcaju). Process Biochemistry, 38, 1457–1462.

    Article  CAS  Google Scholar 

  28. Rai, S. N., Walli, T. K., & Gupta, B. N. (1989). The chemical-composition and nutritive-value of rice straw after treatment with urea or Coprinus fimetarius in a solid-state fermentation system. Animal Feed Science and Technology, 26, 81–92.

    Article  Google Scholar 

  29. Rahman, M. M., Lourenco, M., Hassim, H. A., Baars, J. J. P., Sonnenberg, A. S. M., Cone, J. W., De Boever, J., & Fievez, V. (2011). Improving ruminal degradability of oil palm fronds using white rot fungi. Animal Feed Science and Technology, 169, 157–166.

    Article  CAS  Google Scholar 

  30. Okano, K., Kitagawa, M., Sasaki, Y., & Watanabe, T. (2005). Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Animal Feed Science and Technology, 120, 235–243.

    Article  Google Scholar 

  31. Asiegbu, F. O., Paterson, A., & Smith, J. E. (1996). The effects of co-fungal cultures and supplementation with carbohydrate adjuncts on lignin biodegradation and substrate digestibility. World Journal of Microbiology and Biotechnology, 12, 273–279.

    Article  CAS  Google Scholar 

  32. Mukherjee, R., & Nandi, B. (2004). Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. International Biodeterioration & Biodegradation, 53, 7–12.

    Article  Google Scholar 

  33. Bak, J. S., Ko, J. K., Choi, I. G., Park, Y. C., Seo, J. H., & Kim, K. H. (2009). Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 104, 471–482.

    Article  CAS  Google Scholar 

  34. Stajich, J. E., Wilke, S. K., Ahren, D., Au, C. H., Birren, B. W., Borodovsky, M., Burns, C., Canback, B., Casselton, L. A., Cheng, C. K., Deng, J. X., Dietrich, F. S., Fargo, D. C., Farman, M. L., Gathman, A. C., Goldberg, J., Guigo, R., Hoegger, P. J., Hooker, J. B., Huggins, A., James, T. Y., Kamada, T., Kilaru, S., Kodira, C., Kues, U., Kupfert, D., Kwan, H. S., Lomsadze, A., Li, W. X., Lilly, W. W., Ma, L. J., Mackey, A. J., Manning, G., Martin, F., Muraguchi, H., Natvig, D. O., Palmerini, H., Ramesh, M. A., Rehmeyer, C. J., Roe, B. A., Shenoy, N., Stanke, M., Ter-Hovhannisyan, V., Tunlid, A., Velagapudi, R., Vision, T. J., Zeng, Q. D., Zolan, M. E., & Pukkila, P. J. (2010). Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proceedings of the National Academy of Sciences of the United States of America, 107, 11889–11894.

    Article  CAS  Google Scholar 

  35. Wood, D. A. (1980). Inactivation of extracellular laccase during fruiting of Agaricus bisporus. Journal of General Microbiology, 117, 339–345.

    CAS  Google Scholar 

  36. Ross, I. K. (1982). The role of laccase in carpophore initiation in Coprinus congregatus. Journal of General Microbiology, 128, 2763–2770.

    CAS  Google Scholar 

  37. Dinis, M. J., Bezerra, R. M. F., Nunes, F., Dias, A. A., Guedes, C. V., Ferreira, L. M. M., Cone, J. W., Marques, G. S. M., Barros, A. R. N., & Rodrigues, M. A. M. (2009). Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresource Technology, 100, 4829–4835.

    Article  CAS  Google Scholar 

  38. Iiyama, K., Lam, T. B. T., & Stone, B. A. (1994). Covalent cross-links in the cell-wall. Plant Physiology, 104, 315–320.

    Article  CAS  Google Scholar 

  39. Nuchdang, S., Vatanyoopaisarn, S., & Phalakornkule, C. (2015). Effectiveness of fungal treatment by Coprinopsis cinerea and Polyporus tricholoma on degradation and methane yields of lignocellulosic grass. International Biodeterioration & Biodegradation, 104, 38–45.

    Article  Google Scholar 

  40. Hatakka, A., & Hammel, K. E. (2011). Fungal biodegradation of lignocelluloses. In industrial applications (pp. 319–340). Berlin: Springer.

    Google Scholar 

  41. Chen, Y., Sharma-Shivappa, R. R., Keshwani, D., & Chen, C. (2007). Potential of agricultural residues and hay for bioethanol production. Applied Biochemistry and Biotechnology, 142, 276–290.

    Article  CAS  Google Scholar 

  42. Reid, T., Munyanyi, M., & Mduluza, T. (2016). Effect of cooking and preservation on nutritional and phytochemical composition of the mushroom Amanita zambiana. Food Science & Nutrition, 5, 538–544.

    Article  Google Scholar 

  43. Cheung, P. C. (2008). Nutritional value and health benefits of mushrooms. In Mushrooms as Functional Foods (pp. 73–75). USA: John Wiley & Sons, Inc.

  44. Liu, Y. T., Sun, J., Luo, Z. Y., Rao, S. Q., Su, Y. J., Xu, R. R., & Yang, Y. J. (2012). Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food and Chemical Toxicology, 50, 1238–1244.

    Article  CAS  Google Scholar 

  45. Yin, J., & Zhou, L. (2008). Analysis of nutritional components of 4 kinds of wild edible fungi in Yunnan. Food Research and Development, 29, 133–136.

    Google Scholar 

  46. Vadiveloo, J. (2003). The effect of agronomic improvement and urea treatment on the nutritional value of Malaysian rice straw varieties. Animal Feed Science and Technology, 108, 133–146.

    Article  Google Scholar 

  47. Selim, A. S. M., Pan, J., Takano, T., Suzuki, T., Koike, S., Kobayashi, Y., & Tanaka, K. (2004). Effect of ammonia treatment on physical strength of rice straw, distribution of straw particles and particle-associated bacteria in sheep rumen. Animal Feed Science and Technology, 115, 117–128.

    Article  Google Scholar 

  48. Sarnklong, C., Cone, J. W., Pellikaan, W., & Hendriks, W. H. (2010). Utilization of rice straw and different treatments to improve its feed value for ruminants: a review. Asian Australasian Journal of Animal Sciences, 23, 680–692.

    Article  Google Scholar 

  49. Devendra, C. (1997). Crop residues for feeding animals in Asia: Technology development and adoption in crop/livestock systems. In Crop residues in sustainable mixed crop/livestock farming systems (pp. 241–268). Wallingford, UK: CAB International.

Download references

Acknowledgements

The authors are thankful to Prof. Sheng Yuan, College of Life Science, Nanjing Normal University, China, for the gift of mushroom species. This work was supported by the “973” Program of China (Grant No. 2013CB733902), the National Natural Science Foundation of China (Grant No. 21306087), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123221110008), the Program for New Century Excellent Talents in University, a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Program for Changjiang Scholars and Innovative Research Team in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wu, S., Cai, L. et al. Improved Treatment and Utilization of Rice Straw by Coprinopsis cinerea . Appl Biochem Biotechnol 184, 616–629 (2018). https://doi.org/10.1007/s12010-017-2579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2579-0

Keywords

Navigation