Skip to main content
Log in

Efficient Production of Prebiotic Gluco-oligosaccharides in Orange Juice Using Immobilized and Co-immobilized Dextransucrase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dextransucrase from Leuconostoc mesenteroides NRRL B-512F was subjected to immobilization and co-immobilization with dextranase from Chaetomium erraticum. Immobilization has enhanced the operational and storage stability of dextransucrase. Two hundred milligrammes (2.4 IU/mg) of alginate beads (immobilized and co-immobilized) were found to be optimum for the production of gluco-oligosaccharides (GOS) in orange juice with a high degree of polymerization. The pulp of the orange juice did not interfere in the reaction. In the batch process, co-immobilized dextransucrase (41 g/L) produced a significantly higher amount of GOS than immobilized dextransucrase (37 g/L). Alginate entrapment enhanced the thermal stability of dextransucrase for up to 3 days in orange juice at 30 °C. The production of GOS in semi-continuous process was 39 g/L in co-immobilized dextransucrase and 33 g/L in immobilized dextransucrase. Thus, immobilization technology offers a great scope in terms of reusability and efficient production of a value added functional health drink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vitali, B., Ndagijimana, M., Maccaferri, S., Biagi, E., Guerzoni, M. E., & Brigidi, P. (2012). An in vitro evaluation of the effect of probiotics and prebiotics on the metabolic profile of human microbiota. Anaerobe, 18, 386–391.

    Article  CAS  Google Scholar 

  2. Ogueke, C. C., Owuamanam, C. I., Ihediohanma, N. C., & Iwouno, J. O. (2010). Probiotics and prebiotics: unfolding prospects for better human health. Pakistan Journal of Nutrition, 9, 833–843.

    Article  CAS  Google Scholar 

  3. Yasmin, A., Butt, M. S., Vanbaak, M., & Shahid, M. Z. (2015). Supplementation of prebiotics to a whey-based beverage reduces the risk of hyper cholesterolaemia in rats. International Dairy Journal, 17, 189–201.

    CAS  Google Scholar 

  4. Younis, K., Ahmad, S., & Jahan, K. (2015). Health benefits and application of prebiotics in foods. Journal of Food Processing and Technology, 6, 433.

    Google Scholar 

  5. Market and Standard market (2015). http://www.markets and markets.com. Accessed Sept 2015.

  6. Wang, C. C., Lee, J. C., Luo, S. Y., Kulkarni, S. S., Huang, Y. W., Lee, C. C., Chang, K. L., & Hung, S. C. (2007). Regio-selective one-pot protection of carbohydrates. Nature, 446, 896–899.

    Article  CAS  Google Scholar 

  7. Robyt, J. F., Yoon, S. H., & Mukerjea, R. (2008). Dextransucrase and the mechanism for dextran biosynthesis. Carbohydrate Research, 342, 3039–3048.

    Article  Google Scholar 

  8. Tingirikari, J. M. R., & Goyal, A. (2013). A novel high dextran yielding Weissella cibaria JAG8 for cereal food application. International Journal of Food Science and Nutrition, 64, 346–354.

    Article  Google Scholar 

  9. Tingirikari, J. M. R., Kothari, D., & Goyal, A. (2014a). Superior prebiotic and physico-chemical properties of novel dextran from Weissella cibaria JAG8 for potential food applications. Food and Function, 5, 2324–2330.

    Article  CAS  Google Scholar 

  10. Tingirikari, J. M. R., Kothari, D., Shukla, R., & Goyal, A. (2014b). Structural and biocompatibility properties of dextran from Weissella cibaria JAG8 as food additive. International Journal of Food Science and Nutrition, 65, 686–691.

    Article  CAS  Google Scholar 

  11. Fontes, C. P., Da Silva, J. L. A., Rabelo, M. C., & Rodrigues, S. (2015). Development of low caloric prebiotic fruit juices by dextransucrase acceptor reaction. Journal of Food Science and Technology, 52, 7272–7280.

    Article  CAS  Google Scholar 

  12. Da Silva, I. M., Rabelo, M. C., & Rodrigues, S. (2014). Cashew juice containing prebiotic oligosaccharides. Journal of Food Science and Technology, 51, 2078–2084.

    Article  Google Scholar 

  13. Johansson, S., Diehl, B., Christakopoulos, P., Austin, S., & Vafiadi, C. (2016). Oligosaccharide synthesis in fruit juice concentrates using a glucansucrase from Lactobacillus reuteri 180. Food and Bioproducts Processing, 98, 201–209.

    Article  CAS  Google Scholar 

  14. Parlak, M., Ustek, D., & Tanriseven, A. (2013). A novel method for covalent immobilization of dextransucrase. Journal of Molecular Catalysis B: Enzymatic, 89, 52–60.

    Article  CAS  Google Scholar 

  15. Kaboli, H., & Reilly, P. J. (1980). Immobilization and characterization of Leuconostoc mesenteroides dextransucrase. Biotechnology and Bioengineering Journal, 22, 1055–1069.

    Article  CAS  Google Scholar 

  16. Zehra, O., & Tanriseven, A. (2010). Co-immobilization of dextransucrase and dextranase in alginate. Process Biochemistry, 45, 1645–1651.

    Article  Google Scholar 

  17. Rabelo, M. C., Fontes, C. P., & Rodrigues, S. (2009). Enzyme synthesis of oligosaccharides using cashew apple juice as substrate. Bioresource Technology, 100, 5574–5580.

    Article  CAS  Google Scholar 

  18. Dubois, M., Gilles, K. A., Hamiltom, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  19. Erhardt, F. A., Kugler, J., Chakravarthula, R. R., & Jordening, H. (2008). Co-immobilization of dextransucrase and dextranase for the facilitated synthesis of isomalto-oligosaccharides: Preparation, characterization and modelling. Biotechnology and Bioengineering Journal, 100, 673–683.

    Article  CAS  Google Scholar 

  20. Hashem, A. M., El-Refaei, M. A., Gebril, H. M., & Abdel-Fattah, A. F. (2012). Immobilization of Leuconostoc paramesenteroides dextransucrase enzyme and characterization of its enzyme properties. Journal of Basic and Applied Sciences, 8, 344–352.

    CAS  Google Scholar 

  21. Almeida, F. D. L., Cavalcante, R. S., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A. N., & Rodrigues, S. (2015). Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science and Emerging Technologies, 32, 127–135.

    Article  CAS  Google Scholar 

  22. Leemhuis, H., Pijning, T., Dobruchowska, J. M., Dijkstra, B. W., & Dijkhuizen, L. (2012). Glycosidic bond specific of glucansucrase: on the role of acceptor substrate binding residues. Biocatalysis and Biotransformation, 30, 366–376.

    Article  CAS  Google Scholar 

  23. Valette, P., Pelenc, V., Djouzi, Z., Adrieux, C., Paul, F., Monsan, P., & Szylit, O. (1993). Bioavailability of new synthesized glucooligosaccharides in the intestinal tract of gnotobiotic rats. Journal of the Science of Food and Agriculture, 62, 121–127.

    Article  CAS  Google Scholar 

  24. Vancraeyveld, V., Courtin, C. M., Swennen, K., Dornez, E., Vandewiele, T., Marzorati, M., Verstraete, W., Delaedt, Y., Onagbesan, O., Decuypere, E., Buyse, J., De Ketelaere, B., Broekaert, W. F., Delcour, J. A., & Courtin, C. M. (2008). Structurally different wheat-derived arabino-xylooligosaccharides have different prebiotic and fermentation properties in rats. Journal of Nutrition, 138, 2348–2355.

    Article  CAS  Google Scholar 

  25. Akyildiz, A., & Agcam, E. (2014). Citrus juice technology. In A. Malik, Z. Erginkaya, S. Ahmad, & H. Erten (Eds.), Food engineering series (pp. 37–103). New York: Springer Science.

    Google Scholar 

  26. Willemot, R. M., Monsan, P., & Durand, G. (1988). Effects of dextran on the activity and stability of dextransucrase from Leuconostoc mesenteroides. Annals of the New York Academy of Sciences, 542, 169–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to CNPq for funding the project 300101/2015-5 and providing the financial support for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagan Mohan Rao Tingirikari.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tingirikari, J.M.R., Gomes, W.F. & Rodrigues, S. Efficient Production of Prebiotic Gluco-oligosaccharides in Orange Juice Using Immobilized and Co-immobilized Dextransucrase. Appl Biochem Biotechnol 183, 1265–1281 (2017). https://doi.org/10.1007/s12010-017-2496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2496-2

Keywords

Navigation