Skip to main content

Advertisement

Log in

Bioconversion of Welan Gum from Kitchen Waste by a Two-Step Enzymatic Hydrolysis Pretreatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Kitchen waste (KW) is a worldwide issue, which can lead to environment pollution. Nevertheless, it is also a low-cost and sustainable resource for bio-production. Meanwhile, welan gum (WG) is one kind of the most important exopolysaccharide but with high material cost. The aim of this study was to adopt two-step enzymatic hydrolysis to improve the release and recovery of both sugar and protein in KW for subsequent WG production. As the results, the recovery rates of sugar and protein reached 81.07 and 77.38%, which were both satisfactory. After the conditions optimized in flasks, the welan fermentation was conducted in a 5-L fermentor, and the WG yield, utilization rates of reducing sugar and KDN, respectively, reached 5.57 g L−1, 94.25% and 61.96%. Moreover, the kinetic analyses demonstrated that the WG fermentation in KWH was a partly growth-associated process. The KW was successfully treated by fermentation for the bioconversion to WG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

KW:

Kitchen waste

KWH:

Kitchen waste hydrolysate

WG:

Welan gum

KDN:

Kjeldahl nitrogen

References

  1. Li, Y. Y., & Jin, Y. Y. (2015). Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste. Renewable Energy, 77, 550–557.

    Article  CAS  Google Scholar 

  2. Matsakas, L., & Christakopoulos, P. (2015). Ethanol production from enzymatically treated dried food waste using enzymes produced on-site. Sustainability, 7, 1446–1458.

    Article  CAS  Google Scholar 

  3. Luostarinen, S., & Rintala, J. (2007). Anaerobic on-site treatment of kitchen waste in combination with black water in UASB-septic tanks at low temperatures. Bioresource Technology, 98, 1734–1740.

    Article  CAS  Google Scholar 

  4. Mi, H. K., Han, B. S., Song, Y., Jeong, I. T., & Kim, J. W. (2013). Evaluation of food waste disposal options in terms of global warming and energy recovery: Korea. International Journal of Energy and Environmental Engineering, 4, 1–12.

    Article  Google Scholar 

  5. Zeng, Y., Bian, D., Xie, Y., Jiang, X., Li, X., Li, P., Zhang, Y., & Xie, T. (2017). Utilization of food waste hydrolysate for microbial lipid and protein production by Rhodosporidium toruloides Y2. Journal of Chemical Technology and Biotechnology, 92, 666–673.

    Article  CAS  Google Scholar 

  6. Chen, W. H. (2012). A novel two-stage scrubbing technology for odor control of kitchen waste composting. Aerosol and Air Quality Research, 12, 1386–1397.

    CAS  Google Scholar 

  7. Melikoglu, M., & Lin, C. S. K. (2013). Analysing global food waste problem: Pinpointing the facts and estimating the energy content. Central European Journal of Engineering, 3, 157–164.

    CAS  Google Scholar 

  8. Tanaka, M., Ozaki, H., Ando, A., Shinji Kambara, A., & Moritomi, H. (2008). Basic characteristics of food waste and food ash on steam gasification. Industrial and Engineering Chemistry Research, 47, 2414–2419.

    Article  CAS  Google Scholar 

  9. Liu, Y., Zeng, G., Zhong, H., Wang, Z., Liu, Z., Cheng, M., Liu, G., Yang, X., & Liu, S. (2017). Effect of rhamnolipid solubilization on hexadecane bioavailability: Enhancement or reduction? Journal of Hazardous Materials, 322, 394–401.

    Article  CAS  Google Scholar 

  10. Cheng, M., Zeng, G., Huang, D., Cui, L., Xu, P., Zhang, C., & Liu, Y. (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chemical Engineering Journal, 284, 582–598.

    Article  CAS  Google Scholar 

  11. Pant, A. P., Radovich, T. J. K., Hue, N. V., & Paull, R. E. (2012). Biochemical properties of compost tea associated with compost quality and effects on pak choi growth. Scientia Horticulturae, 148, 138–146.

    Article  CAS  Google Scholar 

  12. Pfaltzgraff, L. A., Bruyn, M. D., Cooper, E. C., Budarin, V., & Clark, J. H. (2013). Food waste biomass: A resource for high-value chemicals. Green Chemistry, 15, 307–314.

    Article  CAS  Google Scholar 

  13. Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 32, 1341–1346.

    Article  CAS  Google Scholar 

  14. YanZhu, Z., Zheng, S., Chocharkjoe, L., Wei, H., Kinyan, L., Li, M. J., & SzeKi, L. (2013). Valorisation of bakery waste for succinic acid production. Green Chemistry, 15, 690–695.

    Article  Google Scholar 

  15. Li, P., Li, T., Zeng, Y., Li, X., Jiang, X., Wang, Y., Xie, T., & Zhang, Y. (2016). Biosynthesis of xanthan gum by Xanthomonas campestris LRELP-1 using kitchen waste as the sole substrate. Carbohydrate Polymers, 151, 684–691.

    Article  CAS  Google Scholar 

  16. Liu, H., Ma, J., Wang, M., Wang, W., Deng, L., Nie, K., Yue, X., Wang, F., & Tan, T. (2016). Food waste fermentation to fumaric acid by Rhizopus arrhizus RH7-13. Applied Biochemistry and Biotechnology, 180, 1524–1533.

    Article  CAS  Google Scholar 

  17. Li, H., Xu, H., Xu, H., Li, S., Ying, H. J., & Ouyang, P. K. (2011). Enhanced welan gum production using a two-stage agitation speed control strategy in Alcaligenes sp. CGMCC2428. Bioprocess and Biosystems Engineering, 34, 95–102.

    Article  CAS  Google Scholar 

  18. Li, H., Li, S., Xu, H., Chen, X., & Ouyang, P. (2013). Improvement of welan gum production and redistribution of metabolic flux under pH control process in Alcaligenes sp. CGMCC2428. Biotechnology and Bioprocess Engineering, 18, 399–405.

    Article  CAS  Google Scholar 

  19. Kaur, V., Bera, M. B., Panesar, P. S., Kumar, H., & Kennedy, J. F. (2014). Welan gum: Microbial production, characterization, and applications. International Journal of Biological Macromolecules, 65, 454–461.

    Article  CAS  Google Scholar 

  20. Plank, J., Lummer, N. R., & Dugonjić-Bilić, F. (2010). Competitive adsorption between an AMPS®;-based fluid loss polymer and welan gum biopolymer in oil well cement. Journal of Applied Polymer Science, 116, 2913–2919.

    CAS  Google Scholar 

  21. Zhu, P., Dong, S., Li, S., Xu, X., & Xu, H. (2014). Improvement of welan gum biosynthesis and transcriptional analysis of the genes responding to enhanced oxygen transfer by oxygen vectors in Sphingomonas sp. Biochemical Engineering Journal, 90, 264–271.

    Article  CAS  Google Scholar 

  22. Li, H., Xu, H., Li, S., Feng, X., & Ouyang, P. (2012). Optimization of exopolysaccharide welan gum production by Alcaligenes sp. CGMCC2428 with tween-40 using response surface methodology. Carbohydrate Polymers, 87, 1363–1368.

    Article  CAS  Google Scholar 

  23. Ai, H., Min, L., Yu, P., Zhang, S., Suo, Y., Ping, L., Shuang, L., & Wang, J. (2015). Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses. Carbohydrate Polymers, 129, 35–43.

    Article  CAS  Google Scholar 

  24. Ping, Z., Chen, X., Sha, L., Hong, X., Dong, S., Xu, Z., & Yu, Z. (2014). Screening and characterization of Sphingomonas sp. mutant for welan gum biosynthesis at an elevated temperature. Bioprocess and Biosystems Engineering, 37, 1849–1858.

    Article  Google Scholar 

  25. Kim, J. H., Lee, J. C., & Pak, D. (2011). Feasibility of producing ethanol from food waste. Waste Management, 31, 2121–2125.

    Article  CAS  Google Scholar 

  26. Yang, Q., Luo, K., Li, X. M., Zhong, Y., Chen, H. B., Yang, G. J., Shi, Y. W., & Zeng, G. M. (2015). Solubilization of waste activated sludge and nitrogenous compounds transformation during solubilization by thermophilic enzyme (S-TE) process. Applied Biochemistry and Biotechnology, 176, 700–711.

    Article  CAS  Google Scholar 

  27. Bernal, H. G., Bernazzani, L., & Galletti, A. M. R. (2014). Furfural from corn stover hemicelluloses. A mineral acid-free approach. Green Chemistry, 16, 3734–3740.

    Article  Google Scholar 

  28. Lin, R., Cheng, J., Ding, L., Song, W., Zhou, J., & Cen, K. (2015). Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresource Technology, 196, 250–255.

    Article  CAS  Google Scholar 

  29. Nakasaki, K., Mimoto, H., Tran, Q. N. M., & Oinuma, A. (2015). Composting of food waste subjected to hydrothermal pretreatment and inoculated with Paecilomyces sp. FA13. Bioresource Technology, 180, 40–46.

    Article  CAS  Google Scholar 

  30. Hafid, H. S., Rahman, N. A. A., Shah, U. K. M., & Baharudin, A. S. (2015). Enhanced fermentable sugar production from kitchen waste using various pretreatments. Journal of Environmental Management, 156, 290–298.

    Article  CAS  Google Scholar 

  31. Wang, Q., Ma, H., Xu, W., Gong, L., Zhang, W., & Zou, D. (2008). Ethanol production from kitchen garbage using response surface methodology. Biochemical Engineering Journal, 39, 604–610.

    Article  CAS  Google Scholar 

  32. Yan, S., Li, J., Chen, X., Wu, J., Wang, P., Ye, J., & Yao, J. (2011). Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renewable Energy, 36, 1259–1265.

    Article  CAS  Google Scholar 

  33. Yan, S. B., Yao, J. M., Yao, L. M., Zhi, Z. J., Chen, X. S., & Wu, J. Y. (2012). Fed batch enzymatic saccharification of food waste improves the sugar concentration in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae H058. Brazilian Archives of Biology and Technology, 55, 183–192.

    Article  CAS  Google Scholar 

  34. Li, P., Zeng, Y., Xie, Y., Li, X., Kang, Y., Wang, Y., Xie, T., & Zhang, Y. (2016). Effect of pretreatment on the enzymatic hydrolysis of kitchen waste for xanthan production. Bioresource Technology, 223, 84–90.

    Article  Google Scholar 

  35. Bradstreet, R. B. (1965). The Kjeldahl method for organic nitrogen. Analytical Chemistry, 26, 169–234.

    Google Scholar 

  36. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  37. Gilani, S. L., Najafpour, G. D., Heydarzadeh, H. D., & Zare, H. (2011). Kinetic models for xanthan gum production using Xanthomonas Campestris from molasses. Chemical Industry and Chemical Engineering Quarterly, 17, 179–187.

    Article  CAS  Google Scholar 

  38. Wang, X., Xu, P., Yuan, Y., Liu, C. L., Zhang, D. Z., Yang, Z. T., Yang, C. Y., & Ma, C. Q. (2006). Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium. Applied and Environmental Microbiology, 72, 3367–3374.

    Article  CAS  Google Scholar 

  39. Weiss, R. M., & Ollis, D. F. (1980). Extracellular microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation. Biotechnology and Bioengineering, 22, 859–873.

    Article  CAS  Google Scholar 

  40. Kaushik, R., Parshetti, G. K., Liu, Z., & Balasubramanian, R. (2014). Enzyme-assisted hydrothermal treatment of food waste for co-production of hydrochar and bio-oil. Bioresource Technology, 168, 267–274.

    Article  CAS  Google Scholar 

  41. Oh, N. S., Shin, D. B., In, M. J., Chang, Y. I., & Han, M. (2004). Effects of capsaicin on the growth and ethanol production of Zygosaccharomyces rouxii KFY80 isolated from Gochujang (fermented hot pepper paste). Food Science and Biotechnology, 13, 749–753.

    CAS  Google Scholar 

  42. Yang, Y. Q., Shen, D. S., Li, N., Xu, D., Long, Y. Y., & Lu, X. Y. (2013). Co-digestion of kitchen waste and fruit-vegetable waste by two-phase anaerobic digestion. Environmental Science and Pollution Research International, 20, 2162–2171.

    Article  CAS  Google Scholar 

  43. Hu, Z. C., Zheng, Y. G., Wang, Z., & Shen, Y. C. (2006). pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enzyme and Microbial Technology, 39, 586–590.

    Article  CAS  Google Scholar 

  44. Lee, J. H., & Park, Y. H. (2001). Optimal production of curdlan by Agrobacterium sp. with feedback inferential control of optimal pH profile. Biotechnology Letters, 23, 525–530.

    Article  CAS  Google Scholar 

  45. Vignesh, P., Arumugam, A., & Ponnusami, V. (2015). Modeling and steady state simulation: Production of xanthan gum from sugarcane broth. Bioprocess and Biosystems Engineering, 38, 49–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Application Program of Department of Science and Technology of Sichuan Province (Grant No. 2015JY0241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkui Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Xie, Y., Zeng, Y. et al. Bioconversion of Welan Gum from Kitchen Waste by a Two-Step Enzymatic Hydrolysis Pretreatment. Appl Biochem Biotechnol 183, 820–832 (2017). https://doi.org/10.1007/s12010-017-2466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2466-8

Keywords

Navigation