Skip to main content
Log in

Enhanced Oil Production by the Tropical Marine Diatom Thalassiosira Sp. Cultivated in Outdoor Photobioreactors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae-derived oils have potential as a biofuel feedstock. To produce microalgal oils at a large scale, large amounts of nutrients and energy are needed to grow the algae. In this study, we evaluated three types of agricultural fertilizer (AF)-based culture media (AF1, AF2, and AF3) based on a previously published enriched seawater (ES) medium to produce biomass and oils from Thalassiosira sp. Under laboratory conditions, the highest cell productivity of Thalassiosira sp. was obtained with the AF3 medium. Thalassiosira sp. cultured in the AF3 medium produced 10.4 ± 0.9 mg L−1 day−1oils, which is significantly higher than the 5.8 ± 0.7 mg L−1 day−1produced in the ES medium. The higher production was due to the presence of nitrate and trace elements, both of which played roles in enhancing biomass and oil content, respectively. During cell growth, resting spores appeared inside the cells and were a marker to harvest the cells. Because of the abundant availability of sunlight in the tropics during the year, the oil production of Thalassiosira sp. in the AF3 medium was scaled up using outdoor photobioreactors under different weather conditions (rainy and dry seasons). Thalassiosira sp. produced more unsaturated fatty acids during the rainy season and produced more saturated fatty acids during the dry season. This study also demonstrated that it was possible to culture Thalassiosira sp. under outdoor conditions using a low-cost agricultural fertilizer-based culture medium (AF3 medium) to produce biodiesel feedstock with an annual production of 8.1 ± 0.4 t ha−1 during the dry season and of 23.9 ± 6.8 t ha−1 during the rainy season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102, 1–81.

    Article  Google Scholar 

  2. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  3. Huang, G. H., Chen, F., Wei, D., Zhang, X. W., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87, 38–46.

    Article  CAS  Google Scholar 

  4. Bhola, V., Swalaha, F., Kumar, R. R., Singh, M., & Bux, F. (2014). Overview of the potential of microalgae for CO2 sequestration. International journal of Environmental Science and Technology, 11, 2103–2118.

    Article  CAS  Google Scholar 

  5. Rawat, I., Bhola, R., Kumar, R. R., & Bux, F. (2013). Improving the feasibility of producing biofuels from microalgae using wastewater. Environmental Technology, 34, 1765–1775.

    Article  CAS  Google Scholar 

  6. Hannon, M., Gimpel, J., Tran, M., Rasala, B., & Mayfield, S. (2010). Biofuels from algae: challenges and potential. Biofuels, 1, 763–784.

    Article  CAS  Google Scholar 

  7. Slade, R., & Bauen, A. (2013). Micro-algae cultivation for bofuels: cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53, 19–38.

    Article  Google Scholar 

  8. Martínez-Córdova, L. R., Campaña-Torres, A., Martínez-Porchas, M., López-Elías, J. A., & García-Sifuentes, C. O. (2012). Effect of alternative mediums on production and proximate composition of the microalgae Chaetocerosmuelleri as food in culture of the copepod Acartia sp. Latin American Journal of Aquatic Research, 40, 169–176.

    Article  Google Scholar 

  9. Simental, J. A., & Sanchez-Saavedra, M. P. (2002). The effect of agricultural fertilizer on growth rate of benthic diatoms. Aquacultural Engineering, 27, 265–272.

    Article  Google Scholar 

  10. Camacho-Rodriguez, J., Ceron-Garcia, M. C., Gonzales-Lopez, C. V., Fernandez-Sevilla, J. M., Contreras-Gomez, A., & Molina-Grima, E. (2013). A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture. Bioresource Technology, 144, 57–66.

    Article  CAS  Google Scholar 

  11. Nurachman, Z., Hartati, A. S., Anward, E. E., Novirani, G., Mangindaan, B., Gandasasmita, S., Syah, Y. M., Panggabean, L. M. G., & Suantika, G. (2012). Oil productivity of the tropical marine diatom Thalassiosira sp. Bioresource Technology, 108, 240–244.

    Article  CAS  Google Scholar 

  12. Quinn, J. C., Yates, T., Dauglas, N., Weyer, K., Butler, J., Bradley, T. H., & Lammers, P. J. (2012). Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial application. Bioresource Technology, 117, 164–171.

    Article  CAS  Google Scholar 

  13. Satoh, A., Ichii, K., Matsumoto, M., Kubota, C., Nemoto, M., Tanaka, M., Yoshino, T., Matsunaga, T., & Tanaka, T. (2013). A process design and productivity evaluation for oil production by indoor mass cultivation of a marine diatom Fistulifera sp. JPCC DA0580. Bioresource Technology, 137, 132–138.

    Article  CAS  Google Scholar 

  14. Wang, S., Hu, Y., Wang, F., Stiles, A. R., & Liu, C. (2014). Scale-up cultivation Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource Technology, 156, 117–122.

    Article  CAS  Google Scholar 

  15. Beal, C. M., Gerber, L. N., Sills, D. L., Huntley, M. E., Machesky, S. C., Walsh, M. J., Tester, J. W., Archibald, I., Granados, J., & Greene, C. H. (2015). Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment. Algal Research, 19, 266–279.

    Article  Google Scholar 

  16. Blanco, A. M., Moreno, J., Del Campo, J. A., Rivas, J., & Guerrero, M. G. (2007). Outdoor cultivation of lutein rich cells of Muriellopsis sp. in open ponds. Applied Microbiology and Biotechnology, 73, 1259–1266.

    Article  CAS  Google Scholar 

  17. Sato, R., Maeda, Y., Yoshino, T., Tanaka, T., & Matsumoto, M. (2014). Seasonal variation of biomass and oil production of the oleaginous diatom Fistulifera sp. in outdoor vertical bubble column and raceway-type bioreactors. Journal of Bioscience Bioengineering, 117, 720–724.

    Article  CAS  Google Scholar 

  18. Xia, L., Ge, H., Zhou, X., Zhang, D., & Hu, C. (2013). Photoautotropic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15. Bioresource Technology, 144, 261–267.

    Article  CAS  Google Scholar 

  19. Moheimani, N., & Borowitzka, M. (2006). The long-term culture of the cocolithophore Pleurochrysiscartene (Haptophyta) in outdoor raceway ponds. Journal of Applied Phycology, 6, 703–712.

    Article  Google Scholar 

  20. Campbell, P., Beer, T., & Batten, D. (2011). Life cycle assessment of biodiesel production from microalgae in ponds. Bioresource Technology, 102, 50–56.

    Article  CAS  Google Scholar 

  21. Richmond, A., & Wu, Z. (2001). Optimisation of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. Journal of Biotechnology, 85, 259–269.

    Article  CAS  Google Scholar 

  22. Hulatt, C. J., & Thomas, D. N. (2011). Energy efficiency of an outdoor microalgae photobioreactor sited at mid-temperate latitude. Bioresource Technology, 102, 6687–6695.

    Article  CAS  Google Scholar 

  23. Brennan, L., & Owende, P. (2010). Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577.

    Article  CAS  Google Scholar 

  24. Chaumont, D. (1993). Biotechnology of algal biomass production: a review of systems for outdoor mass culture. Journal of Applied Phycology, 5, 593–604.

    Article  Google Scholar 

  25. Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16, 4316–4342.

    Article  CAS  Google Scholar 

  26. Cooksey, K. E., Guckert, J. B., Williams, S. A., & Collis, P. R. (1987). Fluorometric determination of the neutral lipid content of microalgae cells using Nile red. Journal of Microbiology Methods, 6, 333–345.

    Article  CAS  Google Scholar 

  27. Bligh, E. G., & Dryer, W. J. (1959). A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  28. Lomas, M. W. (2004). Nitrate reductase and urease enzyme activity in the marine diatom Thalassiosira weissflogii (Bacillariophyceae): interactions among nitrogen substrates. Marine Biology, 144, 37–44.

    Article  CAS  Google Scholar 

  29. Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81, 629–636.

    Article  CAS  Google Scholar 

  30. Feng, D., Chen, Z., Xue, S., & Zhang, W. (2011). Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresource Technology, 102, 6710–6716.

    Article  CAS  Google Scholar 

  31. Crofcheck, C., Shea, A., Montross, M., Crocker, M., & Andrews, R. (2012). Influence of media composition on the growth rate of Chlorella vulgaris and Scenedesmus acutus utilized for CO2 mitigation. Journal of Biochemistry and Technology, 4, 589–594.

    Google Scholar 

  32. Ren, H.-Y., Liu, B.-F., Ma, C., Zhao, L., & Ren, N.-Q. (2013). A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnology for Biofuels, 6, 143.

    Article  CAS  Google Scholar 

  33. Ho, S., Chang, J., Lai, Y., & Chen, C. N. (2014). Achieving high lipid productivity of a thermo-tolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions. Bioresource Technology, 156, 108–116.

    Article  CAS  Google Scholar 

  34. Hockin, N. L., Mock, T., Mulholland, F., Kopriva, S., & Malin, G. (2012). The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiology, 158, 299–312.

    Article  CAS  Google Scholar 

  35. Thomas, C. R., Hasle, G. R., Syvertsen, E. E., Steidinger, K. A., Tangen, K., Throndsen J., & Heimdal, B. R. (1997). Identifying marine diatoms and dinoflagellates. San Diego: Academic Press.

  36. Lee, R. E. (2008). Phycology (4th ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  37. Sugie, K., & Kuma, K. (2008). Resting spore formation in the marine diatom Thalassiosira nordenskioeldii under iron- and nitrogen-limited conditions. Journal Plankton Research, 30, 1245–1255.

    Article  CAS  Google Scholar 

  38. Kuwata, A., Hama, T., & Takahashi, M. (1993). Ecophysiological characterization of two life forms, resting spores, and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Marine Ecology Progress Series, 102, 245–255.

    Article  Google Scholar 

  39. Solovchenko, A. E. (2012). Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russian Journal of Plant Physiology, 59, 167–176.

    Article  CAS  Google Scholar 

  40. Doucette, G. J., & Fryxell, G. A. (1983). Thalassiosira antarctica (Bacillariophyceae): vegetative and resting stage chemical composition of an ice-related marine diatom. Marine Biology, 78, 1–6.

    Article  CAS  Google Scholar 

  41. Ramachandra, T. V., Mahapatra, D. M., & Karthick, B. (2009). Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Industrial & Engineering Chemistry Research, 48, 8769–8788.

    Article  CAS  Google Scholar 

  42. Muhlroth, A., Li, K., Rokke, G., Winge, P., Olsen, Y., Hohmann-Marriott, M. F., Vadstein, O., & Bones, A. M. (2013). Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Marine Drugs, 11, 4662–4697.

    Article  CAS  Google Scholar 

  43. Vonshak, A., & Torzillo, G. (2004). Environmental stress physiology. In A. Richmond (Ed.), Handbook of microalgal culture: biotechnology and applied phycology (pp. 57–77). USA: Blackwell Publishing.

    Google Scholar 

  44. Nurachman, Z., Hartini, H., Rahmaniyah, W. R., Kurnia, D., Hidayat, R., Prijamboedi, B., Suendo, V., Ratnaningsih, E., Panggabean, L. M. G., & Nurbaiti, S. (2015). Tropical marine Chlorella sp. PP1 as a source of photosynthetic pigments for dye-sensitized solar cells. Algal Research, 10, 25–32.

    Article  Google Scholar 

  45. Bissinger, J. E., Montagnes, D. J. S., Sharples, J., & Atkinson, D. (2008). Predicting marine phytoplankton maximum growth rate from temperature: improving on the Eppley curve using quantile regression. Limnology and Oceanography, 53, 487–493.

    Article  Google Scholar 

  46. Butterwick, C., Heaney, S. I., & Talling, J. F. (2005). Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology, 50, 291–300.

    Article  Google Scholar 

  47. Lavens, P., & Sorgeloos, P. (1996). Manual on the production and use of live food for aquaculture (pp. 13–20). Roma: FAO.

    Google Scholar 

  48. Feng, P., Deng, Z., Hu, Z., & Fan, L. (2011). Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresource Technology, 102, 10577–10584.

    Article  CAS  Google Scholar 

  49. Zhou, X., Xia, L., Ge, H., Zhang, D., & Hu, C. (2013). Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions. Bioresource Technology, 138, 131–135.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by the Ministry of Research, Technology and Higher Education, the Republic of Indonesia through the Program of Masterplan Percepatan dan Perluasan Pembangunan Indonesia (MP3EI) to ZN, and the Program of Insentif Riset Sistem Inovasi Nasional (INSINAS) to ZN, as well as Beasiswa Pendidikan Pascasarjana Dalam Negeri (BPP-DN) to PK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeily Nurachman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to the memory of Dr. Santi Nurbaiti (†29 May 2016)

Electronic supplementary material

ESM 1

(DOCX 1520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusumaningtyas, P., Nurbaiti, S., Suantika, G. et al. Enhanced Oil Production by the Tropical Marine Diatom Thalassiosira Sp. Cultivated in Outdoor Photobioreactors. Appl Biochem Biotechnol 182, 1605–1618 (2017). https://doi.org/10.1007/s12010-017-2421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2421-8

Keywords

Navigation