Skip to main content
Log in

Cloning, Characterization, and Expression Analysis of a Gene Encoding a Putative Lysophosphatidic Acid Acyltransferase from Seeds of Paeonia rockii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tree peony (Paeonia section Moutan DC.) is an excellent woody oil crop, and the cloning and functional analysis of genes related to fatty acid (FA) metabolism from this organism has not been reported. Lysophosphatidic acid acyltransferase (LPAAT), which converts lysophosphatidic acid (LPA) to phosphatidic acid (PA), catalyzes the addition of fatty acyl moieties to the sn-2 position of the LPA glycerol backbone in triacylglycerol (TAG) biosynthesis. This project reports a putative lysophosphatidic acid acyltransferase gene PrLPAAT1 isolated from Paeonia rockii. Our data indicated that PrLPAAT1 has 1047 nucleotides and encodes a putative 38.8 kDa protein with 348 amino acid residues. Bioinformatic analysis demonstrated that PrLPAAT1 contains two transmembrane domains (TMDs). Subcellular localization analysis confirmed that PrLPAAT1 is a plasma membrane protein. Phylogenetic analysis revealed that PrLPAAT1 shared 74.3 and 65.5% amino acid sequence identities with the LPAAT1 sequences from columbine and grape, respectively. PrLPAAT1 belongs to AGPAT family, and may have acyltransferase activity. PrLPAAT1 was ubiquitously expressed in diverse tissues, and PrLPAAT1 expression was higher in the flower and developing seed. PrLPAAT1 is probably an important component in the FA accumulation process, especially during the early stages of seed development. PrLPAAT1 overexpression using a seed-specific promoter increased total FA content and the main FA accumulation in Arabidopsis transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yuan, J. H., Cheng, F. Y., & Zhou, S. L. (2011). The phylogeographic structure and conservation genetics of the endangered tree peony, Paeonia rockii (Paeoniaceae), inferred from chloroplast gene sequences. Conservation Genetics, 12, 1539–1549.

    Article  Google Scholar 

  2. Hong, D. Y., & Pan, K. Y. (2005). Notes on taxonomy of Paeonia sect. Moutan DC. (Paeoniaceae). Acta Phytotaxonomica Sinica, 43, 169–177.

    Article  Google Scholar 

  3. Simopoulos, A. P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine and Pharmacotherapy, 56, 365–379.

    Article  CAS  Google Scholar 

  4. Simopoulos, A. P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomedicine and Pharmacotherapy, 60, 502–507.

    Article  CAS  Google Scholar 

  5. Li, S. S., Yuan, R. Y., Chen, L. G., Wang, L. S., Hao, X. H., Wang, L. J., Zheng, X. C., & Du, H. (2015). Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (Paeonia section Moutan DC.) cultivars by GC-MS. Food Chemistry, 173, 133–140.

    Article  CAS  Google Scholar 

  6. Zhang, M., Fan, J., Taylor, D. C., & Ohlrogge, J. B. (2009). Dgat1 and pdat1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell, 21, 3885–3901.

    Article  CAS  Google Scholar 

  7. Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M. X., Arondel, V., Bates, P. D., Baud, S., Bird, D., DeBono, A., Durrett, T. P., Franke, R. B., Graham, I. A., Katayama, K., Kelly, A. A., Larson, T., Markham, J. E., Miquel, M., Molina, I., Nishida, I., Rowland, O., Samuels, L., Schmid, K. M., Wada, H., Welti, R., Xu, C., Zallot, R., & Ohlrogge, J. (2013). Acyl-lipid metabolism. The Arabidopsis Book/American Society of Plant Biologists, 11 .e0161

  8. Yuan, Y., Liang, Y., Gao, L., Sun, R., Zheng, Y., & Li, D. (2015). Functional heterologous expression of a lysophosphatidic acid acyltransferase from coconut (Cocos nucifera L.) endosperm in Saccharomyces cerevisiae and Nicotiana tabacum. Scientia Horticulturae, 192, 224–230.

    Article  CAS  Google Scholar 

  9. Durrett, T. P., Benning, C., & Ohlrogge, J. (2008). Plant triacylglycerols as feedstocks for the production of biofuels. Plant Journal, 54, 593–607.

    Article  CAS  Google Scholar 

  10. Dyer, J. M., Stymne, S., Green, A. G., & Carlsson, A. S. (2008). High-value oils from plants. Plant Journal, 54, 640–655.

    Article  CAS  Google Scholar 

  11. Bates, P. D., & Browse, J. (2012). The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Frontiers in Plant Science, 3, 147.

    Article  Google Scholar 

  12. Chapman, K. D., & Ohlrogge, J. B. (2012). Compartmentation of triacylglycerol accumulation in plants. Journal of Biological Chemistry, 287, 2288–2294.

    Article  CAS  Google Scholar 

  13. Chen, S., Lei, Y., Xu, X., Huang, J., Jiang, H., Wang, J., Cheng, Z., Zhang, J., Song, Y., Liao, B., & Li, Y. (2015). The peanut (Arachis hypogaea L.) Gene AhLPAT2 increases the lipid content of transgenic Arabidopsis seeds. PloS One, 10 .e0136170

  14. Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M. X., Arondel, V., Bates, P. D., Baud, S., Bird, D., Debono, A., Durrett, T. P., Franke, R. B., Graham, I. A., Katayama, K., Kelly, A. A., Larson, T., Markham, J. E., Miquel, M., Molina, I., Nishida, I., Rowland, O., Samuels, L., Schmid, K. M., Wada, H., Welti, R., Xu, C., Zallot, R., Ohlrogge, J. (2013). Acyllipid metabolism. Arabidopsis Book, 11, e0161.

  15. Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., & Stymne, S. (2000). Phospholipid: diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proceedings of the National Academy of Sciences, 97, 6487–6492.

    Article  CAS  Google Scholar 

  16. Lee, K. R., Chen, G. Q., & Kim, H. U. (2015). Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production. Plant Cell Reports, 34, 603–615.

    Article  CAS  Google Scholar 

  17. Agarwal, A. K. (2012). Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. Current Opinion in Lipidology, 23, 290–302.

    Article  CAS  Google Scholar 

  18. Coleman, R. A., & Lee, D. P. (2004). Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research, 43, 134–176.

    Article  CAS  Google Scholar 

  19. Körbes, A. P., Kulcheski, F. R., Margis, R., Margis-Pinheiro, M., & Turchetto-Zolet, A. C. (2016). Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Molecular Phylogenetics and Evolution, 96, 55–69.

    Article  Google Scholar 

  20. Kim, H. U., Li, Y., & Huang, A. H. (2005). Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 17, 1073–1089.

    Article  CAS  Google Scholar 

  21. Roscoe, T. J. (2005). Identification of acyltransferases controlling triacylglycerol biosynthesis in oilseeds using a genomics-based approach. European Journal of Lipid Science and Technology, 107, 256–262.

    Article  CAS  Google Scholar 

  22. Arroyo-Caro, J. M., Chileh, T., Kazachkov, M., Zou, J., Alonso, D. L., & García-Maroto, F. (2013). The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant Science, 199–200, 29–40.

    Article  Google Scholar 

  23. Brown, A., Brough, C., Kroon, J., & Slabas, A. (1995). Identification of a cDNA that encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii. Plant Molecular Biology, 29, 267–278.

    Article  CAS  Google Scholar 

  24. Hanke, C., Wolter, F. P., Coleman, J., Peterek, G., & Frentzen, M. (1995). A plant acyltransferase involved in triacylglycerol biosynthesis complements an Escherichia coli sn-1-acylglycerol-3-phosphate acyltransferase mutant. European Journal of Biochemistry, 232, 806–810.

    Article  CAS  Google Scholar 

  25. Knutzon, D. S., Lardizabal, K. D., Nelsen, J. S., Bleibaum, J. L., Davies, H. M., & Metz, J. G. (1995). Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates. Plant Physiology, 109, 999–1006.

    Article  CAS  Google Scholar 

  26. Yu, X. H., Prakash, R. R., Sweet, M., & Shanklin, J. (2014). Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation. Plant Physiology, 164, 455–465.

    Article  CAS  Google Scholar 

  27. Chen, G. Q., van Erp, H., Martin-Moreno, J., Johnson, K., Morales, E., Browse, J., Eastmond, P. J., & Lin, J. T. (2016). Expression of Castor LPAT2 enhances ricinoleic acid content at the sn-2 position of triacylglycerols in Lesquerella seed. International Journal of Molecular Sciences, 17, 507.

    Article  CAS  Google Scholar 

  28. Maisonneuve, S., Bessoule, J. J., Lessire, R., Delseny, M., & Roscoe, T. J. (2010). Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiology, 152, 670–684.

    Article  CAS  Google Scholar 

  29. Chen, S. L., Huang, J. Q., Lei, Y., Zhang, Y. T., Ren, X. P., Chen, Y. N., Jiang, H. F., Yan, L. Y., Li, Y. R., & Liao, B. S. (2012). Identification and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea. Journal of Biosciences, 37, 1029–1039.

    Article  CAS  Google Scholar 

  30. Zou, J., Katavic, V., Giblin, E. M., Barton, D. L., MacKenzie, S. L., Keller, W. A., Hu, X., & Taylor, D. C. (1997). Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell, 9, 909–923.

    Article  CAS  Google Scholar 

  31. Rao, S. S., & Hildebrand, D. (2009). Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene. Lipids, 44, 945–951.

    Article  CAS  Google Scholar 

  32. Kim, H. U., & Huang, A. H. C. (2004). Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiology, 134, 1206–1216.

    Article  CAS  Google Scholar 

  33. Wallis, J. G., & Browse, J. (2010). Lipid biochemists salute the genome. Plant Journal, 16, 1092–1106.

    Article  Google Scholar 

  34. Gao, Q., Lu, Y., Yao, H., Xu, Y. J., Huang, W., & Wang, C. (2016). Phospholipid homeostasis maintains cell polarity, development and virulence in metarhizium robertsii. Environmental Microbiology. doi:10.1111/1462-2920.13408.

    Google Scholar 

  35. Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S., & Thompson, W. F. (2006). A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols, 1, 2320–2325.

    Article  CAS  Google Scholar 

  36. Kelley, L. A., & Sternberg, M. J. (2009). Protein structure prediction on the web: a case study using the Phyre server. Nature Protocols, 4, 363–371.

    Article  CAS  Google Scholar 

  37. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Hiqqins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.

    Article  CAS  Google Scholar 

  38. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  39. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  40. Rambaldi, D., & Ciccarelli, F. D. (2009). FancyGene: dynamic visualization of gene structures and protein domain architectures on genomic loci. Bioinformatics, 25, 2281–2282.

    Article  CAS  Google Scholar 

  41. Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for agrobacterium mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735–743.

    Article  CAS  Google Scholar 

  42. Yamashita, A., Hayashi, Y., Matsumoto, N., Nemoto-Sasaki, Y., Oka, S., Tanikawa, T., & Sugiura, T. (2014). Glycerophosphate/Acylglycerophosphate acyltransferases. Biology, 3, 801–830.

    Article  CAS  Google Scholar 

  43. Lewin, T. M., Wang, P., & Coleman, R. A. (1999). Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry, 38, 5764–5771.

    Article  CAS  Google Scholar 

  44. Ghosh, A. K., Ramakrishnan, G., Chandramohan, C., & Rajasekharan, R. (2008). CGI-58, the causative gene for Chanarin-Dorfman syndrome, mediates acylation of lysophosphatidic acid. Journal of Biological Chemistry, 283, 24525–24533.

    Article  CAS  Google Scholar 

  45. Yamashita, A., Nakanishi, H., Suzuki, H., Kamata, R., Tanaka, K., Waku, K., & Sugiura, T. (2007). Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycero-3-phosphate acyltransferase 1. Biochimica et Biophysica Acta, 1771, 1202–1215.

    Article  CAS  Google Scholar 

  46. Harayama, T., Shindou, H., Ogasawara, R., Suwabe, A., & Shimizu, T. (2008). Identification of a novel noninflammatory biosynthetic pathway of platelet-activating factor. Journal of Biological Chemistry, 283, 11097–11106.

    Article  CAS  Google Scholar 

  47. Albesa-Jove, D., Svetlikova, Z., Tersa, M., Sancho-Vaello, E., Carreras-Gonzalez, A., Bonnet, P., Arrasate, P., Eguskiza, A., Angala, S. K., Cifuente, J. O., Kordulakova, J., Jackson, M., Mikusova, K., & Guerin, M. E. (2016). Structural basis for selective recognition of acyl chains by the membrane-associated acyltransferase PatA. Nature Communications, 7, 10906–10906.

    Article  CAS  Google Scholar 

  48. Tamada, T., Feese, M. D., Ferri, S. R., Kato, Y., Yajima, R., Toguri, T., & Kuroki, R. (2004). Substrate recognition and selectivity of plant glycerol-3-phosphate acyltransferases (GPATs) from Cucurbita moscata and Spinacea oleracea. Acta Crystallographica, 60, 13–21.

    Google Scholar 

  49. Agarwal, A. K., Sukumaran, S., Cortés, V. A., Tunison, K., Mizrachi, D., Sankella, S., Gerard, R. D., Horton, J. D., & Garg, A. (2011). Human 1-acylglycerol-3-phosphate Oacyltransferase isoforms 1 and 2: biochemical characterization and inability to rescue hepatic steatosis in Agpat2(−/−) gene lipodystrophic mice. Journal of Biological Chemistry, 286, 37676–37691.

    Article  CAS  Google Scholar 

  50. Wang, Y., You, F. M., Lazo, G. R., Luo, M. C., Thilmony, R., Gordon, S., Kianian, S. F., & Gu, Y. K. (2013). PIECE: a database for plant gene structure comparison and evolution. Nucleic Acids Research, 41.

  51. Yu, B., Wakao, S., Fan, J., & Benning, C. (2004). Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant and Cell Physiology, 45, 503–510.

    Article  CAS  Google Scholar 

  52. Bates, P. D., Stymne, S., & Ohlrogge, J. (2013). Biochemical pathways in seed oil synthesis. Current Opinion in Plant Biology, 16, 358–364.

    Article  CAS  Google Scholar 

  53. Sperling, P., Linscheid, M., Stocker, S., Muhlbach, H. P., & Heinz, E. (1993). In vivo desaturation of cis-delta-9-monounsaturated to cis-delta-9, 12-diunsaturated alkenylether glycerolipids. Journal of Biological Chemistry, 268, 26935–26940.

    CAS  Google Scholar 

  54. Vandeloo, F. J., Broun, P., Turner, S., & Somerville, C. (1995). An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proceedings of the National Academy of Sciences, 92, 6743–6747.

    Article  CAS  Google Scholar 

  55. Wallis, J. G., Watts, J. L., & Browse, J. (2002). Polyunsaturated fatty acid synthesis: what will they think of next? Trends in Biochemical Sciences, 27, 467–473.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Forestry Public Welfare Industry Research Project of China (201404701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Long Zhang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Table S1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, QY., Niu, LX., Yu, R. et al. Cloning, Characterization, and Expression Analysis of a Gene Encoding a Putative Lysophosphatidic Acid Acyltransferase from Seeds of Paeonia rockii . Appl Biochem Biotechnol 182, 721–741 (2017). https://doi.org/10.1007/s12010-016-2357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2357-4

Keywords

Navigation