Skip to main content
Log in

Effects of Chromosomal Integration of the Vitreoscilla Hemoglobin Gene (vgb) and S-Adenosylmethionine Synthetase Gene (metK) on ε-Poly-l-Lysine Synthesis in Streptomyces albulus NK660

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

ε-Poly-l-lysine (ε-PL) is a widely used natural food preservative. To test the effects of the Vitreoscilla hemoglobin (VHb) and S-adenosylmethionine (SAM) on ε-PL synthesis in Streptomyces albulus NK660, the heterologous VHb gene (vgb) and SAM synthetase gene (metK) were inserted into the S. albulus NK660 chromosome under the control of the constitutive ermE* promoter. CO-difference spectrum analysis showed S. albulus NK660-VHb strain could express functional VHb. S. albulus NK660-VHb produced 26.67 % higher ε-PL and 14.57 % higher biomass than the wild-type control, respectively. Reversed-phase high-pressure liquid chromatography (RP-HPLC) results showed the overexpression of the metK gene resulted in increased intracellular SAM synthesis in S. albulus NK660-SAM, which caused increases of biomass as well as the transcription level of ε-PL synthetase gene (pls). Results indicated that the expression of vgb and metK gene improved on ε-PL synthesis and biomass for S. albulus NK660, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoshida, T., & Nagasawa, T. (2003). Epsilon-poly-L-lysine: microbial production, biodegradation and application potential. Applied Microbiology and Biotechnology, 62, 21–26.

    Article  CAS  Google Scholar 

  2. Hamano, Y., Yoshida, T., Kito, M., Nakamori, S., Nagasawa, T., & Takagi, H. (2006). Biological function of the pld gene product that degrades ε-poly-L-lysine in Streptomyces albulus. Applied Microbiology and Biotechnology, 72, 173–181.

    Article  CAS  Google Scholar 

  3. El-Sersy, N. A., Abdelwahab, A. E., Abouelkhiir, S. S., Abou-Zeid, D. M., & Sabry, S. A. (2012). Antibacterial and anticancer activity of ε-poly-L-lysine (ε-PL) produced by a marine Bacillus subtilis sp. Journal of Basic Microbiology, 52, 513–522.

    Article  CAS  Google Scholar 

  4. Geng, W. T., Yang, C., Gu, Y. Y., Liu, R. H., Guo, W. B., Wang, X. M., Song, C. J., & Wang, S. F. (2014). Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans. Microbial Biotechnology, 7, 155–164.

    Article  CAS  Google Scholar 

  5. Bankar, S. B., & Singhal, R. S. (2011). Improved poly-ε-lysine biosynthesis using Streptomyces noursei NRRL5126 by controlling dissolved oxygen during fermentation. Journal of Microbiology and Biotechnology, 21, 652–658.

    CAS  Google Scholar 

  6. Xu, Z. X., Bo, F. F., Xia, J., Sun, Z. Z., Li, S. X., Feng, H., & Xu, H. (2015). Effects of oxygen-vectors on the synthesis of epsilon-poly-lysine and the metabolic characterization of Streptomyces albulus PD-1. Biochemical Engineering Journal, 94, 58–64.

    Article  CAS  Google Scholar 

  7. Kahar, P., Kobayashi, K., Iwata, T., Hiraki, J., Kojima, M., & Okabe, M. (2002). Production of ε-polylysine in an airlift bioreactor (ABR). Journal of Bioscience and Bioengineering, 93, 74–280.

    Article  Google Scholar 

  8. Wang, S. H., Liu, F., Hou, Z. W., Zong, G. L., Zhu, X. Q., & Ling, P. X. (2014). Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb). World Journal of Microbiology and Biotechnology, 30, 1369–1376.

    Article  CAS  Google Scholar 

  9. Wakabayashi, S., Matsubara, H., & Webster, D. A. (1986). Primary sequence of a dimeric bacterial hemoglobin from Vitreoscilla. Nature, 322, 481–483.

    Article  CAS  Google Scholar 

  10. Zhang, L., Li, Y., Wang, Z., Xia, Y., Chen, W., & Tang, K. (2007). Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnology Advances, 25, 123–136.

    Article  CAS  Google Scholar 

  11. Wilhelmson, A., Kallio, P. T., Oksman-Caldente, K. M., & Nuutila, A. M. (2005). Expression of Vitreoscilla hemoglobin enhances growth of Hyoscyamus muticus hairy root cultures. Planta Medica, 71, 48–53.

    Article  CAS  Google Scholar 

  12. Liang, F., Shouwen, C., Ming, S., & Ziniu, Y. (2007). Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis improve the cell density and insecticidal crystal proteins yield. Applied Microbiology and Biotechnology, 74, 390–397.

    Article  Google Scholar 

  13. Su, Y. S., Li, X., Liu, Q. Z., Hou, Z. W., Zhu, X. Q., Guo, X. P., & Ling, P. X. (2010). Improved poly-γ-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresource Technology, 101, 4733–4736.

    Article  CAS  Google Scholar 

  14. Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., & McCann, P. P. (1996). S-Adenosylmethionine and methylation. Fased Journal, 10, 471–480.

    CAS  Google Scholar 

  15. Okamoto, S., Lezhava, A., Hosaka, T., Okamoto-Hosoya, Y., & Ochi, K. (2003). Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). Journal of Bacteriology, 185, 601–609.

    Article  CAS  Google Scholar 

  16. Kim, D. J., Huh, J. H., Yang, Y. Y., Kang, C. M., Lee, I. H., Hyun, C. G., Hong, S. K., & Suh, J. W. (2003). Accumulation of S-adenosyl-l-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. Journal of Bacteriology, 185, 592–600.

    Article  CAS  Google Scholar 

  17. Huh, J. H., Kim, D. J., Zhao, X. Q., Li, M., Jo, Y. Y., Yoon, T. M., Shin, S. K., Yong, J. H., Ryu, Y. W., Yang, Y. Y., & Suh, J. W. (2004). Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in Streptomycetes. FEMS Microbiology Letters, 238, 439–447.

    Article  CAS  Google Scholar 

  18. Zhang, X., Fen, M., Shi, X., Bai, L., & Zhou, P. (2008). Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide. Applied Microbiology and Biotechnology, 78, 991–995.

    Article  CAS  Google Scholar 

  19. Maharjan, S., Oh, T. J., Lee, H. C., & Sohng, J. K. (2008). Heterologous expression of metK1-sp and afsR-sp in Streptomyces venezuelae for the production of pikromycin. Biotechnology Letters, 30, 1621–1626.

    Article  CAS  Google Scholar 

  20. Oh, T. J., Niraula, N. P., Liou, K., & Sohng, J. K. (2010). Identification of the duplicated genes for S-adenosyl-L-methionine synthetase (metK1-sp and metK2-sp) in Streptomyces peucetius var. caesius ATCC 27952. Journal of Applied Microbiology, 109, 398–407.

    CAS  Google Scholar 

  21. Gu, Y. Y., Yang, C., Wang, X. M., Geng, W. T., Sun, Y., Feng, J., Wang, Y. Y., Quan, Y. F., Che, Y., Zhang, C., Gong, T., Zhang, W., Gao, W. X., Zuo, Z. Q., Song, C. J., & Wang, S. F. (2014). Genome sequence of the ε-poly-L-lysine-producing strain Streptomyces albulus NK660, isolated from soil in Gutian, Fujian Province, China. Genome Announcements, 2, e00532–14.

    Article  Google Scholar 

  22. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., & Hopwood, D. A. (2000). Practical Streptomyces genetics. Norwich: The John Innes Foundation.

    Google Scholar 

  23. Bierman, M., Logan, R., O’Brian, K., Seno, E. T., Rao, R. N., & Schoner, B. E. (1992). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene, 116, 43–49.

    Article  CAS  Google Scholar 

  24. Zhang, W., Xie, H., He, Y., Feng, J., Gao, W. X., Gu, Y. Y., Wang, S. F., & Song, C. J. (2013). Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. FEMS Microbiology Letters, 343, 127–134.

    Article  CAS  Google Scholar 

  25. Itzhaki, R. F. (1972). Colorimetric method for estimating polylysine and polyarginine. Analytical Biochemistry, 50, 569–574.

    Article  CAS  Google Scholar 

  26. Liao, G., Li, J., Li, L., Yang, H., Tian, Y., & Tan, H. (2010). Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production. Microbial Cell Factories, 9, 1–7.

    Article  Google Scholar 

  27. Yu, L., Cao, N., Wang, L., Xiao, C., Guo, M., Chu, J., Zhuang, Y., & Zhang, S. (2012). Oxytetracycline biosynthesis improvement in Streptomyces rimosus following duplication of minimal PKS genes. Enzyme and Microbial Technology, 50, 318–324.

    Article  CAS  Google Scholar 

  28. Jiang, L., Wei, J., Li, L., Niu, G., & Tan, H. (2013). Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus. Applied Microbiology and Biotechnology, 97, 10469–10477.

    Article  CAS  Google Scholar 

  29. Wang, T., Bai, L., Zhu, D., Lei, X., Liu, G., Deng, Z., & You, D. (2012). Enhancing macrolide production in Streptomyces by coexpressing three heterologous genes. Enzyme and Microbial Technology, 50, 5–9.

    Article  CAS  Google Scholar 

  30. Pablos, T. E., Mora, E. M., Le Borgne, S., Ramirez, O. T., Gosset, G., & Lara, A. R. (2011). Vitreoscilla hemoglobin expression in engineered Escherichia coli: improved performance in high cell-density batch cultivations. Biotechnology Journal, 6, 993–1002.

    Article  CAS  Google Scholar 

  31. Arnaldos, M., Kunkel, S. A., Stark, B. C., & Pagilla, K. R. (2014). Characterization of heme protein expressed by ammonia-oxidizing bacteria under low dissolved oxygen conditions. Applied Microbiology and Biotechnology, 98, 3231–3239.

    Article  CAS  Google Scholar 

  32. Stark, B. C., Pagilla, K. R., & Dikshit, K. L. (2015). Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Applied Microbiology and Biotechnology, 99, 1627–1636.

    Article  CAS  Google Scholar 

  33. Anand, A., Duk, B. T., Singh, S., Akbas, M. Y., Webster, D. A., Stark, B. C., & Dikshit, K. L. (2010). Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochemistry Journal, 426, 271–280.

    Article  CAS  Google Scholar 

  34. Calderone, T. L., Stevens, R. D., & Oas, T. G. (1996). High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. Journal of Molecular Biology, 262, 407–412.

    Article  CAS  Google Scholar 

  35. Ohama, T., Muto, A., & Osawa, S. (1990). Role of GC-biased mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content. Nucleic Acids Research, 18, 1565–1569.

    Article  CAS  Google Scholar 

  36. Chen, W., Hughes, D. E., & Bailey, J. E. (1994). Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. Biotechnology Progress, 10, 308–313.

    Article  CAS  Google Scholar 

  37. Erenler, S. O., & Geckil, H. (2014). Effect of vitreoscilla hemoglobin and culture conditions on production of bacterial L-asparaginase, an oncolytic enzyme. Applied Biochemistry and Biotechnology, 173, 2140–2151.

    Article  CAS  Google Scholar 

  38. Wang, Y., Wang, Y. G., Chu, J., Zhuang, Y. P., Zhang, L. X., & Zhang, S. L. (2007). Improved production of erythromycin A by expression of a heterologous gene encoding S-adenosylmethionine synthetase. Applied Microbiology and Biotechnology, 75, 837–842.

    Article  CAS  Google Scholar 

  39. Shin, S. K., Xu, D., Kwon, H. J., & Suh, J. W. (2006). S-Adenosylmethionine activates adpA transcription and promotes streptomycin biosynthesis in Streptomyces griseus. FEMS Microbiology Letters, 259, 53–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National key Basic Research Program of China (“973”-Program) 2012CB725204, National Key Technology R&D Program No. 2015BAD16B04, Natural Science Foundation of China Grant Nos. 31470213 and 31300032, Project of Tianjin, China (13JCZDJC27800, 13TXSYJC40100 and 14ZCZDSF00009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shufang Wang or Cunjiang Song.

Additional information

Yanyan Gu and Xiaomeng Wang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Wang, X., Yang, C. et al. Effects of Chromosomal Integration of the Vitreoscilla Hemoglobin Gene (vgb) and S-Adenosylmethionine Synthetase Gene (metK) on ε-Poly-l-Lysine Synthesis in Streptomyces albulus NK660. Appl Biochem Biotechnol 178, 1445–1457 (2016). https://doi.org/10.1007/s12010-015-1958-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1958-7

Keywords

Navigation