Skip to main content
Log in

Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Electrokinetic-microbial remediation (EMR) has emerged as a promising option for the removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. The aim of this study was to enhance degradation of phenanthrene (Phe)-contaminated soils using EMR combined with biosurfactants. The electrokinetic (EK) remediation, combined with Phe-degrading Sphingomonas sp. GY2B, and biosurfactant obtained by fermentation of Pseudomonas sp. MZ01, degraded Phe in the soil with an efficiency of up to 65.1 % at the anode, 49.9 % at the cathode after 5 days of the treatment. The presence of biosurfactants, electricity, and a neutral electrolyte stimulated the growth of the degrading bacteria as shown by a rapid increase in microbial biomass with time. The electrical conductivity and pH changed little during the course of the treatment, which benefitted the growth of microorganisms and the remediation of Phe-contaminated soil. The EMR system with the addition of biosurfactant had the highest Phe removal, demonstrating the biosurfactant may enhance the bioavailability of Phe and the interaction with the microorganism. This study suggests that the EMR combined with biosurfactants can be used to enhance in situ bioremediation of PAH-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mohan, S. V., Kisa, T., Ohkuma, T., Kanaly, R. A., & Shimizu, Y. (2006). Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev. Environ. Sci. Biotechnol., 5, 347–374.

    Article  CAS  Google Scholar 

  2. Park, J.-Y., Lee, H.-H., Kim, S.-J., Lee, Y.-J., & Yang, J.-W. (2007). Surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. J Hazard Mater, 140, 230–236.

    Article  CAS  Google Scholar 

  3. Saichek, R. E., & Reddy, K. R. (2003). Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere, 51, 273–287.

    Article  CAS  Google Scholar 

  4. Luo, Q., Zhang, X., Wang, H., & Qian, Y. (2005). The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil. J Hazard Mater, 121, 187–194.

    Article  CAS  Google Scholar 

  5. Wick, L. Y., Mattle, P. A., Wattiau, P., & Harms, H. (2004). Electrokinetic transport of PAH-degrading bacteria in model aquifers and soil. Environ Sci Technol, 38, 4596–4602.

    Article  CAS  Google Scholar 

  6. Da Rocha, U. N., Tótola, M. R., Pessoa, D. M. M., Júnior, J. T. A., Neves, J. C. L., & Borges, A. C. (2009). Mobilisation of bacteria in a fine-grained residual soil by electrophoresis. J Hazard Mater, 161, 485–491.

    Article  Google Scholar 

  7. Lee, H.-S., Jahng, D., & Lee, K. (1999). Electrokinetic transport of an NAPL-degrading microorganism through sandy soil bed. Biotechnol Bioprocess Eng, 4, 151–153.

    Article  CAS  Google Scholar 

  8. Lee, H. S., & Lee, K. (2001). Bioremediation of diesel-contaminated soil by bacterial cells transported by electrokinetics. J Microbiol Biotechnol, 11, 1038–1045.

    CAS  Google Scholar 

  9. Tiehm, A., Augenstein, T., Ilieva, D., Schell, H., Weidlich, C., & Mangold, K. M. (2010). Bio-electro-remediation: electrokinetic transport of nitrate in a flow-through system for enhanced toluene biodegradation. J Appl Electrochem, 40, 1263–1268.

    Article  CAS  Google Scholar 

  10. Reddy, K. R. & Cameselle C. (2009). Electrochemical Remediation Technologies for Polluted Soils, vol 10. In X. Lu and S. Yuan (Ed.), Electrokinetic Removal of Chlorinated Organic compounds (pp. 219–234). John Wiley & Sons, NJ.

  11. Saichek, R. E., & Reddy, K. R. (2004). Evaluation of surfactants/cosolvents for desorption/solubilization of phenanthrene in clayey soils. Int. J. Environ. Stud., 61, 587–604.

    Article  CAS  Google Scholar 

  12. Laha, S., Tansel, B., & Ussawarujikulchai, A. (2009). Surfactant–soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review. J Environ Manage, 90, 95–100.

    Article  CAS  Google Scholar 

  13. Zhu, H., & Aitken, M. D. (2010). Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environ Sci Technol, 44, 7260–7265.

    Article  CAS  Google Scholar 

  14. Gomes, H. I., Dias-Ferreira, C., & Ribeiro, A. B. (2012). Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere, 87, 1077–1090.

    Article  CAS  Google Scholar 

  15. Mulligan, C. N. (2009). Recent advances in the environmental applications of biosurfactants. Curr. Opin. Colloid Interface Sci., 14, 372–378.

    Article  CAS  Google Scholar 

  16. Cheng, K. Y., Zhao, Z. Y., & Wong, J. W. (2004). Solubilization and desorption of PAHs in soil-aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition. Environ Technol, 25, 1159–1165.

    Article  CAS  Google Scholar 

  17. Park, J.-Y., Chen, Y., Chen, J., & Yang, J.-W. (2002). Removal of phenanthrene from soil by additive-enhanced electrokinetics. Geosci. J., 6, 1–5.

    Article  Google Scholar 

  18. Kim, S. H., Han, H. Y., Lee, Y. J., Kim, C. W., & Yang, J. W. (2010). Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. Sci Total Environ, 408, 3162–3168.

    Article  CAS  Google Scholar 

  19. Lear, G., Harbottle, M. J., Sills, G., Knowles, C. J., Semple, K. T., & Thompson, I. P. (2007). Impact of electrokinetic remediation on microbial communities within PCP contaminated soil. Environ Pollut, 146, 139–146.

    Article  CAS  Google Scholar 

  20. Mena, E., Villaseñor, J., Cañizares, P., & Rodrigo, M. A. (2014). Effect of a direct electric current on the activity of a hydrocarbon-degrading microorganism culture used as the flushing liquid in soil remediation processes. Sep Purif Technol, 124, 217–223.

    Article  CAS  Google Scholar 

  21. Zhang, H., Guo, C. L., Lu, G. N., Yang, C., Dang, Z., & Wu, R. R. (2013). Screening and fermentation optimization of a biosurfactant-producing oil-degrading bacterium. J Agro-Environ Sci, 32, 2185–2191.

    CAS  Google Scholar 

  22. Tao, X.-Q., Lu, G.-N., Dang, Z., Yang, C., & Yi, X.-Y. (2007). A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochem, 42, 401–408.

    Article  CAS  Google Scholar 

  23. Liang, X., Zhang, M., Guo, C., Abel, S., Yi, X., Lu, G., Yang, C., & Dang, Z. (2014). Competitive solubilization of low-molecular-weight polycyclic aromatic hydrocarbons mixtures in single and binary surfactant micelles. Chem Eng J, 244, 522–530.

    Article  CAS  Google Scholar 

  24. Lear, G., Harbottle, M. J., van der Gast, C. J., Jackman, S. A., Knowles, C. J., Sills, G., & Thompson, I. P. (2004). The effect of electrokinetics on soil microbial communities. Soil Biol. Biochem., 36, 1751–1760.

    Article  CAS  Google Scholar 

  25. Lysenko, L. L., & Mishchuk, N. A. (2009). Electrohydrodynamic method of pH regulation at soil decontamination. Colloids Surf A Physicochem Eng Asp, 333, 59–66.

    Article  CAS  Google Scholar 

  26. Baek, K., Kim, D.-H., Park, S.-W., Ryu, B.-G., Bajargal, T., & Yang, J.-S. (2009). Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. J Hazard Mater, 161, 457–462.

    Article  CAS  Google Scholar 

  27. Chang, J.-H., & Liao, Y.-C. (2006). The effect of critical operational parameters on the circulation-enhanced electrokinetics. J Hazard Mater, 129, 186–193.

    Article  CAS  Google Scholar 

  28. Pazos, M., Sanromán, M. A., & Cameselle, C. (2006). Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere, 62, 817–822.

    Article  CAS  Google Scholar 

  29. Kim, B.-K., Baek, K., Ko, S.-H., & Yang, J.-W. (2011). Research and field experiences on electrokinetic remediation in South Korea. Sep Purif Technol, 79, 116–123.

    Article  CAS  Google Scholar 

  30. Aciego Pietri, J. C., & Brookes, P. C. (2009). Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil. Soil Biol. Biochem., 41, 1396–1405.

    Article  CAS  Google Scholar 

  31. Thrash, J. C., & Coates, J. D. (2008). Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol, 42, 3921–3931.

    Article  CAS  Google Scholar 

  32. Pazos, M., Plaza, A., Martín, M., & Lobo, M. C. (2012). The impact of electrokinetic treatment on a loamy-sand soil properties. Chem Eng J, 183, 231–237.

    Article  CAS  Google Scholar 

  33. Gonzini, O., Plaza, A., Di Palma, L., & Lobo, M. C. (2010). Electrokinetic remediation of gasoil contaminated soil enhanced by rhamnolipid. J Appl Electrochem, 40, 1239–1248.

    Article  CAS  Google Scholar 

  34. Harbottle, M. J., Lear, G., Sills, G. C., & Thompson, I. P. (2009). Enhanced biodegradation of pentachlorophenol in unsaturated soil using reversed field electrokinetics. J Environ Manage, 90, 1893–1900.

    Article  CAS  Google Scholar 

  35. Jackman, S. A., Maini, G., Sharman, A. K., Sunderland, G., & Knowles, C. J. (2001). Electrokinetic movement and biodegradation of 2,4-dichlorophenoxyacetic acid in silt soil. Biotechnol Bioeng, 74, 40–48.

    Article  CAS  Google Scholar 

  36. Niqui-Arroyo, J.-L., & Ortega-Calvo, J.-J. (2007). Integrating biodegradation and electroosmosis for the enhanced removal of polycyclic aromatic hydrocarbons from creosote-polluted soils all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. J Environ Qual, 36, 1444–1451.

    Article  CAS  Google Scholar 

  37. Chilingar, G. V., Loo, W. W., Khilyuk, L. F., & Katz, S. A. (1997). Electrobioremediation of soils contaminated with hydrocarbons and metals: progress report. Energy Sources, 19, 129–146.

    Article  CAS  Google Scholar 

  38. Lageman, R., Clarke, R. L., & Pool, W. (2005). Electro-reclamation, a versatile soil remediation solution. Eng Geol, 77, 191–201.

    Article  Google Scholar 

  39. Lee, G. T., Ro, H. M., & Lee, S. M. (2007). Effects of triethyl phosphate and nitrate on electrokinetically enhanced biodegradation of diesel in low permeability soils. Environ Technol, 28, 853–860.

    Article  CAS  Google Scholar 

  40. Velasco-Alvarez, N., González, I., Damian-Matsumura, P., & Gutiérrez-Rojas, M. (2011). Enhanced hexadecane degradation and low biomass production by Aspergillus niger exposed to an electric current in a model system. Bioresour Technol, 102, 1509–1515.

    Article  CAS  Google Scholar 

  41. Lee, H.-H., & Yang, J.-W. (2000). A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. J Hazard Mater, 77, 227–240.

    Article  CAS  Google Scholar 

  42. Breedveld, G. D., Hauge, A., Olstad, G., Briseid, T. (1995). Nutrient demand in bioventing of fuel oil pollution. Battelle Press, Columbus.

  43. Hinchee, R. E., Miller, R. N., Johnson, P. C. (1995). In situ aeration: air sparging, bioventing, and related remediation process. Battelle Press, Columbus

  44. Urum, K., & Pekdemir, T. (2004). Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere, 57, 1139–1150.

    Article  CAS  Google Scholar 

  45. Janek, T., Łukaszewicz, M., Rezanka, T., & Krasowska, A. (2010). Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol, 101, 6118–6123.

    Article  CAS  Google Scholar 

  46. Xia, W.-J., Luo, Z.-B., Dong, H.-P., Yu, L., Cui, Q.-F., & Bi, Y.-Q. (2012). Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ-1 using waste vegetable oils. Appl Biochem Biotechnol, 166, 1148–1166.

    Article  CAS  Google Scholar 

  47. Xia, W., Du, Z., Cui, Q., Dong, H., Wang, F., He, P., & Tang, Y. (2014). Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J Hazard Mater, 276, 489–498.

    Article  CAS  Google Scholar 

  48. Gholami, M., Yousefi Kebria, D., & Mahmudi, M. (2014). Electrokinetic remediation of perchloroethylene-contaminated soil. Int J Environ Sci Technol, 11, 1433–1438.

    Article  CAS  Google Scholar 

  49. Kaya, A., & Yukselen, Y. (2005). Zeta potential of soils with surfactants and its relevance to electrokinetic remediation. J Hazard Mater, 120, 119–126.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (41101291), the Science and Technology Planning Project of Guangdong Province(2014A20217002), the National High Technology Research and Development Program of China (2012AA101403) and Ministry of Science and Technology of China (2012AA06A203). We thank our visiting professor, D. Barnes, for providing valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuling Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Guo, C., Zhang, H. et al. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant. Appl Biochem Biotechnol 178, 1325–1338 (2016). https://doi.org/10.1007/s12010-015-1949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1949-8

Keywords

Navigation