Skip to main content
Log in

Enzymatic Formation of Novel Ginsenoside Rg1-α-Glucosides by Rat Intestinal Homogenates

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The variation of linkage positions in ginsenosides leads to diverse pharmacological efficiencies. The hydrolysis and transglycosylation properties of glycosyl hydrolase family enzymes have a great impact on the synthesis of novel and structurally diversified compounds. In this study, six ginsenoside Rg1-α-glucosides were found to be synthesized from the reaction mixture of maltose as a donor and ginsenoside Rg1 as a sugar acceptor in the presence of rat small intestinal homogenates, which exhibit high α-glucosidase activities. The individual compounds were purified and were identified by spectroscopy (HPLC-MS, 1H-NMR, and 13C-NMR) as 6-O-[α-d-glcp-(1→4)-β-d-glcp]-20-O-(β-d-glcp)-20(S)-protopanaxatriol, 6-O-β-d-glcp-20-O-[α-d-glcp-(1→6)-(β-d-glcp)]-20(S)-protopanaxatriol, 6-O-β-d-glcp-20-O-[α-d-glcp-(1→4)-(β-d-glcp)]-20(S)-protopanaxatriol, 6-O-[α-d-glcp-(1→6)-β-d-glcp]-20-O-(β-glcp)-20(S)-protopanaxatriol, 6-O-[α-d-glcp-(1→3)-β-d-glcp]-20-O-(β-d-glcp)-20(S)-protopanaxatriol, and 6-O-β-d-glcp-20-O-[α-d-glcp-(1→3)-(β-d-glcp)]-20(S)-protopanaxatriol. Among these six, 6-O-β-d-glcp-20-O-α-d-glcp-(1→6)-(β-d-glcp)-20(S)-protopanaxatriol and 6-O-α-d-glcp-(1→6)-β-d-glcp-20-O-(β-d-glcp)-20(S)-protopanaxatriol are considered to be novel compounds of alpha-ginsenosidal saponins which pharmacological activities should be further characterized. This is the first report on the enzymatic elaboration of ginsenoside Rg1 derivatives using rat intestinal homogenates. To the best of our knowledge, it is also the first to reveal the sixth and 20th positions of an unusual α-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl sugar chain with 20(S)-protopanaxatriol saponins in Panax ginseng Mayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cham, B. E. (2007). Solasodine rhamnosyl glycosides in a cream formulation is effective for treating large and troublesome skin cancers. Research Journal of Biological Sciences, 2, 749–761.

    Google Scholar 

  2. Choi, K. T. (2008). Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacologica Sinica, 29, 1109–1118.

    Article  CAS  Google Scholar 

  3. Crout, D. H., & Vic, G. (1998). Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Current Opinion in Chemical Biology, 2, 98–111.

    Article  CAS  Google Scholar 

  4. Danieli, B., Falcone, L., Monti, D., Riva, S., Gebhardt, S., & Schubert-Zsilavecz, M. (2001). Regioselective enzymatic glycosylation of natural polyhydroxylated compounds: galactosylation and glucosylation of protopanaxatriol ginsenosides. The Journal of Organic Chemistry, 66, 262–269.

    Article  CAS  Google Scholar 

  5. Hancock, S. M., Vaughan, M. D., & Withers, S. G. (2006). Engineering of glycosidases and glycosyltransferases. Current Opinion in Chemical Biology, 10, 509–519.

    Article  CAS  Google Scholar 

  6. Kim, Y. H., Lee, Y. G., Choi, K. J., Uchida, K., & Suzuki, Y. (2001). Transglycosylation to ginseng saponins by cyclomaltodextrin glucanotransfearases. Bioscience, Biotechnology, & Biochemistry, 65, 875–883.

    Article  CAS  Google Scholar 

  7. Ko, S. R., Suzuki, Y., Kim, Y. H., & Choi, K. J. (2001). Enzymatic synthesis of two ginsenoside Re-beta-xylosides. Bioscience, Biotechnology, & Biochemistry, 65, 1223–1226.

    Article  CAS  Google Scholar 

  8. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  9. Marounek, M., Vovk, S. J., & Skrivanova, V. (1995). Distribution of activity of hydrolytic enzymes in the digestive tract of rabbits. British Journal of Nutrition, 73, 463–469.

    Article  CAS  Google Scholar 

  10. Murase, H., Yamauchi, R., Kato, K., Kunieda, T., & Terao, J. (1997). Synthesis of a novel vitamin E derivative, 2-(alpha-D-glucopyranosyl) methyl-2,5,7,8-tetramethylchroman-6-ol, by alpha-glucosidase-catalyzed transglycosylation. Lipids, 32, 73–78.

    Article  CAS  Google Scholar 

  11. Muto, N., Nakamura, T., & Yamamoto, I. (1990). Enzymatic formation of a nonreducing L-ascorbic acid alpha-glucoside: purification and properties of alpha-glucosidases catalyzing site-specific transglucosylation from rat small intestine. Journal of Biochemistry, 107, 222–227.

    CAS  Google Scholar 

  12. Nag, S. A., Qin, J. J., Wang, W., Wang, M. H., Wang, H., & Zhang, R. (2012). Ginsenosides as anticancer agents: in vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Frontiers in Pharmacology, 3, 25.

    Article  Google Scholar 

  13. Prodanović, R., Milosavić, N., Sladić, D., Veličković, T., & Vujčić, Z. (2005). Synthesis of hydroquinone-α-glucoside by α-glucosidasefrom baker’s yeast. Biotechnology Letters, 27, 551–554.

    Article  Google Scholar 

  14. Quan, L. H., Min, J. W., Sathiyamoorthy, S., Yang, D. U., Kim, Y. J., & Yang, D. C. (2012). Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant beta-glucosidase. Biotechnology Letters, 34, 913–917.

    Article  CAS  Google Scholar 

  15. Raul, F., Gosse, F., Doffoel, M., Darmenton, P., & Wessely, J. Y. (1988). Age related increase of brush border enzyme activities along the small intestine. Gut, 29, 1557–1563.

    Article  CAS  Google Scholar 

  16. Sanada, S., Kondo, N., Shoji, J., Tanaka, O., & Shibata, S. (1974). Studies on the saponins of ginseng. I. Structures of ginsenoside-Ro, -Rb_1,-Rb_2,-Rc and -Rd. Chemical & Pharmaceutical Bulletin, 22, 421–428.

    Article  CAS  Google Scholar 

  17. Sathishkumar, N., Sathiyamoorthy, S., Ramya, M., Yang, D.-U., Lee, H. N., & Yang, D.-C. (2012). Molecular docking studies of anti-apoptotic BCL-2, BCL-XL, and MCL-1 proteins with ginsenosides from Panax ginseng. Journal of Enzyme Inhibition & Medicinal Chemistry, 27, 685–692.

    Article  CAS  Google Scholar 

  18. Sato, T., Nakagawa, H., Kurosu, J., Yoshida, K., Tsugane, T., Shimura, S., Kirimura, K., Kino, K., & Usami, S. (2000). Alpha-anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701. Journal of Bioscience & Bioengineering, 90, 625–630.

    Article  CAS  Google Scholar 

  19. Subramaniyam Sathiyamoorthy, J.-G. I., Lee, B.-S., Kwon, W.-S., Yang, D.-U., Kim, J.-H., & Yang, D.-C. (2011). Insilico analysis for expressed sequence tags from embryogenic callus and flower buds of Panax ginseng C. A. Meyer. Journal of Ginseng Research, 35, 21–30.

    Article  Google Scholar 

  20. Sugimoto, K., Nishimura, T., Nomura, K., & Kuriki, T. (2003). Syntheses of arbutin-alpha-glycosides and a comparison of their inhibitory effects with those of alpha-arbutin and arbutin on human tyrosinase. Chemical & Pharmaceutical Bulletin (Tokyo), 51, 798–801.

    Article  CAS  Google Scholar 

  21. Sugimoto, M., Furui, S., Sasaki, K., & Suzuki, Y. (2003). Transglucosylation activities of multiple forms of alpha-glucosidase from spinach. Bioscience, Biotechnology, & Biochemistry, 67, 1160–1163.

    Article  CAS  Google Scholar 

  22. Toshiyuki Sato, N. H., Saito, J., Umezawa, S., Honda, Y., Kino, K., & Kirimura, K. (2012). Purification, characterization, and gene identification of an α-glucosyl transfer enzyme, a novel type α-glucosidase from Xanthomonas campestris WU-9701. Journal of Molecular Catalysis B: Enzymatic, 80, 20–27.

    Article  Google Scholar 

  23. Wang, L. X., & Huang, W. (2009). Enzymatic transglycosylation for glycoconjugate synthesis. Current Opinion in Chemical Biology, 13, 592–600.

    Article  CAS  Google Scholar 

  24. Yamamoto, I., Muto, N., Murakami, K., Suga, S., & Yamaguchi, H. (1990). L-ascorbic acid alpha-glucoside formed by regioselective transglucosylation with rat intestinal and rice seed alpha-glucosidases: its improved stability and structure determination. Chemical & Pharmaceutical Bulletin (Tokyo), 38, 3020–3023.

    Article  CAS  Google Scholar 

  25. Yamamoto, I., Muto, N., Nagata, E., Nakamura, T., & Suzuki, Y. (1990). Formation of a stable L-ascorbic acid alpha-glucoside by mammalian alpha-glucosidase-catalyzed transglucosylation. Biochimica et Biophysica Acta, 1035, 44–50.

    Article  CAS  Google Scholar 

  26. Zhou, W. B., Feng, B., Huang, H. Z., Qin, Y. J., Wang, Y. Z., Kang, L. P., Zhao, Y., Wang, X. N., Cai, Y., Tan, D. W., & Ma, B. P. (2010). Enzymatic synthesis of alpha-glucosyl-timosaponin BII catalyzed by the extremely thermophilic enzyme: Toruzyme 3.0 L. Carbohydrate Research, 345, 1752–1759.

    Article  CAS  Google Scholar 

  27. Zhu, G. Y., Li, Y. W., Hau, D. K., Jiang, Z. H., Yu, Z. L., & Fong, W. F. (2011). Protopanaxatriol-type ginsenosides from the root of Panax ginseng. Journal of Agricultural & Food Chemistry, 59, 200–205.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Korea Institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries (KIPET NO: 309019-03-3-SB010) and Next-Generation BioGreen 21 Program (SSAC, grant#: PJ00952903), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeon Ju Kim or Deok Chun Yang.

Additional information

Ramya Mathiyalagan and Young-Hoi Kim contributed equally to this work.

Electronic supplementary material

Supplementary Fig. S1

Schematic representation of α-glucosyl-ginsenoside Rg1 synthesis. (JPEG 225 kb)

Supplementary Fig. S2

Effects of pH on the transglycosylation of G-Rg1 with rat small intestinal homogenates. The transglycosylation ratio was expressed as total peak area (%) of new six transglycosylation products by HPLC. (JPEG 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathiyalagan, R., Kim, YH., Kim, Y.J. et al. Enzymatic Formation of Novel Ginsenoside Rg1-α-Glucosides by Rat Intestinal Homogenates. Appl Biochem Biotechnol 177, 1701–1715 (2015). https://doi.org/10.1007/s12010-015-1847-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1847-0

Keywords

Navigation