Skip to main content
Log in

Utilization of High-Fructose Corn Syrup for Biomass Production Containing High Levels of Docosahexaenoic Acid by a Newly Isolated Aurantiochytrium sp. YLH70

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

High-fructose corn syrup (HFCS) is an agro-source product and has been the most commonly used substitute for sugar as sweetener in food industry due to its low price and high solution property. In this study, the F55 HFCS, rich in fructose and glucose, was first tested for biomass and docosahexaenoic acid productions as a mixed carbon source by a newly isolated Aurantiochytrium sp.YLH70. After the compositions of the HFCS media were optimized, the results showed that the HFCS with additions of metal ion and vitamin at low concentrations was suitable for biomass and docosahexaenoic acid productions and the metal ion and sea salt had the most significant effects on biomass production. During the 5-l fed-batch fermentation, total HFCS containing 180 g l−1 reducing sugar was consumed and yields of biomass, lipid, and DHA could reach 78.5, 51, and 20.1 g l−1, respectively, at 114 h. Meanwhile, the daily productivity and the reducing sugar conversion yield for docosahexaenoic acid were up to 4.23 g l−1day−1 and 0.11 g g−1. The fatty acid profile of Aurantiochytrium sp.YLH70 showed that 46.4 % of total fatty acid was docosahexaenoic acid, suggesting that Aurantiochytrium sp.YLH70 was a promising DHA producer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prithviraj, L., & Schmitz, A. (2013). Sugar and high fructose corn syrup consumption shifts: change in tastes or relative prices? International Sugar Journal, 115, 556–559.

    Google Scholar 

  2. Singh, I., Langyan, S., & Yadava, P. (2014). Sweet corn and corn-based sweeteners. Sugar Tech, 16, 144–149.

    Article  CAS  Google Scholar 

  3. Popa, D., & Ustunol, Z. (2011). Influence of sucrose, high fructose corn syrup and honey from different floral sources on growth and acid production by lactic acid bacteria and bifidobacteria. International Journal of Dairy Technology, 64, 247–253.

    Article  CAS  Google Scholar 

  4. Aleksieva, P., Pancheva, V., & Djambazov, I. (1996). Large scale production of acid proteinases by Humicola lutea 120–5. Biotechnology & Biotechnological Equipment, 10, 51–55.

    Article  Google Scholar 

  5. Ward, O. P., & Singh, A. (2005). Omega-3/6 fatty acids: alternative sources of production. Process Biochemistry, 40, 3627–3652.

    Article  CAS  Google Scholar 

  6. Yokochi, T., Honda, D., Higashihara, T., & Nakahara, T. (1998). Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Applied Microbiology and Biotechnology, 49, 72–76.

    Article  CAS  Google Scholar 

  7. Santangelo, G., Bongiorni, L., & Pignataro, L. (2007). Microbial oils: production, processing and markets for specialty long-chain omega-3 polyunsaturated fatty acids (pp. 43–72). Bridgwater:The Oily Press.

    Google Scholar 

  8. Ganuza, E., Anderson, A. J., & Ratledge, C. (2008). High-cell-density cultivation of Schizochytrium sp in an ammonium/pH-auxostat fed-batch system. Biotechnology Letters, 30, 1559–1564.

    Article  CAS  Google Scholar 

  9. Perveen, Z., Ando, H., Ueno, A., Ito, Y., Yamamoto, Y., Yamada, Y., Takagi, T., Kaneko, T., Kogame, K., & Okuyama, H. (2006). Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnology Letters, 28, 197–202.

    Article  CAS  Google Scholar 

  10. Sijtsma, L., & De Swaaf, M. E. (2004). Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Applied Microbiology and Biotechnology, 64, 146–153.

    Article  CAS  Google Scholar 

  11. Ren, L. J., Li, J., Hu, Y. W., Ji, X. J., & Huang, H. (2013). Utilization of cane molasses for docosahexaenoic acid production by Schizochytrium sp CCTCC M209059. Korean Journal of Chemical Engineering, 30, 787–789.

    Article  CAS  Google Scholar 

  12. Hong, D. D., Mai, D. T. N., Thom, L. T., Ha, N. C., Lam, B. D., Tam, L. T., Anh, H. T. L., & Thu, N. T. H. (2013). Biodiesel production from Vietnam heterotrophic marine microalga Schizochytrium mangrovei PQ6. Journal of Bioscience and Bioengineering, 116, 180–185.

    Article  CAS  Google Scholar 

  13. Liang, Y. N., Sarkany, N., Cui, Y., Yesuf, J., Trushenski, J., & Blackburn, J. W. (2010). Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresource Technology, 101, 3623–3627.

    Article  CAS  Google Scholar 

  14. Yamasaki, T., Aki, T., Shinozaki, M., Taguchi, M., Kawamoto, S., & Ono, K. (2006). Utilization of shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. Journal of Bioscience and Bioengineering, 102, 323–327.

    Article  CAS  Google Scholar 

  15. Weuster-Botz, D. (2000). Experimental design for fermentation media development: statistical design or global random search? Journal of Bioscience and Bioengineering, 90, 473–483.

    Article  CAS  Google Scholar 

  16. Wu, S. T., & Lin, L. P. (2003). Application of response surface methodology to optimize docosahexaenoic acid production by Schizochytrium sp S31. Journal of Food Biochemistry, 27, 127–139.

    Article  CAS  Google Scholar 

  17. Abd Elrazak, A., Ward, A. C., & Glassey, J. (2013). Response surface methodology for optimising the culture conditions for eicosapentaenoic acid production by marine bacteria. Journal of Industrial Microbiology & Biotechnology, 40, 477–487.

    Article  CAS  Google Scholar 

  18. Gupta, A., Wilkens, S., Adcock, J. L., Puri, M., & Barrow, C. J. (2013). Pollen baiting facilitates the isolation of marine thraustochytrids with potential in omega-3 and biodiesel production. Journal of Industrial Microbiology & Biotechnology, 40, 1231–1240.

    Article  CAS  Google Scholar 

  19. Spiro, R. G. (1966) Analysis of sugars found in glycoproteins. ed.

  20. Gao, M., Song, X. J., Feng, Y. G., Li, W. L., & Cui, Q. (2013). Isolation and characterization of Aurantiochytrium species: high docosahexaenoic acid (DHA) production by the newly isolated microalga, Aurantiochytrium sp SD116. Journal of Oleo Science, 62, 143–151.

    Article  CAS  Google Scholar 

  21. Grzebyk, D., & Sako, Y. (1998). Phylogenetic analysis of nine species of Prorocentrum (Dinophyceae) inferred from 18S ribosomal DNA sequences, morphological comparisons, and description of Prorocentrum panamensis, sp. Nov. Journal of Phycology, 34, 1055–1068.

    Article  CAS  Google Scholar 

  22. Chang, K. J. L., Dunstan, G. A., Abell, G. C. J., Clementson, L. A., Blackburn, S. I., Nichols, P. D., & Koutoulis, A. (2012). Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Applied Microbiology and Biotechnology, 93, 2215–2231.

    Article  CAS  Google Scholar 

  23. Hong, D. D., Hoang, T. L. A., & Ngo, T. H. T. (2011). Study on biological characteristics of heterotrophic marine microalga-Schizochytrium mangrovei PQ6 isolated from Phu Quoc Island, Kien Giang province, Vietnam. Journal of Phycology, 47, 944–954.

    Article  CAS  Google Scholar 

  24. Hong, W. K., Rairakhwada, D., Seo, P. S., Park, S. Y., Hur, B. K., Kim, C. H., & Seo, J. W. (2011). Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp KRS101. Applied Biochemistry and Biotechnology, 164, 1468–1480.

    Article  CAS  Google Scholar 

  25. Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86, 807–815.

    Article  CAS  Google Scholar 

  26. Goldstein, S., & Belsky, M. (1963). B12 and B1 auxotrophy of lower marine phycomycetes. Archiv für Mikrobiologie, 47, 161–163.

    Article  Google Scholar 

  27. Nagano, N., Taoka, Y., Honda, D., & Hayashi, M. (2013). Effect of trace elements on growth of marine eukaryotes, tharaustochytrids. Journal of Bioscience and Bioengineering, 116, 337–339.

    Article  CAS  Google Scholar 

  28. Chi, Z., Pyle, D., Wen, Z., Frear, C., & Chen, S. (2007). A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry, 42, 1537–1545.

    Article  CAS  Google Scholar 

  29. Ganuza, E., & Izquierdo, M. S. (2007). Lipid accumulation in Schizochytrium G13/2S produced in continuous culture. Applied Microbiology and Biotechnology, 76, 985–990.

    Article  CAS  Google Scholar 

  30. Jakobsen, A. N., Aasen, I. M., Josefsen, K. D., & Strom, A. R. (2008). Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp strain T66: effects of N and P starvation and O(2) limitation. Applied Microbiology and Biotechnology, 80, 297–306.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Zhejiang Provincial Natural Science Foundation of China (no. LQ13C010002), Natural Science Foundation of Zhejiang University of Technology (no. 2013XZ007), and Research Foundation of Zhejiang Education Department (no. Y201225077).

Compliance with Ethical Standards

Conflict of Interest

This study was funded by Zhejiang Provincial Natural Science Foundation of China (no. LQ13C010002), Natural Science Foundation of Zhejiang University of Technology (no. 2013XZ007), and Research Foundation of Zhejiang Education Department (no. Y201225077). The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, XJ., Yu, ZQ., Liu, YL. et al. Utilization of High-Fructose Corn Syrup for Biomass Production Containing High Levels of Docosahexaenoic Acid by a Newly Isolated Aurantiochytrium sp. YLH70. Appl Biochem Biotechnol 177, 1229–1240 (2015). https://doi.org/10.1007/s12010-015-1809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1809-6

Keywords

Navigation