Skip to main content
Log in

Comparative Study of Biosafety, DNA, and Chromosome Damage of Different-Materials-Modified Fe3O4 in Rats

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The increasing use of modified Fe3O4 magnetic microparticles has raised safety concerns regarding their use and effect on human health. This study assessed the in vivo biosafety, DNA, and chromosome damage of modified Fe3O4 microparticles such as Au@Fe3O4, Ag@Fe3O4, Cs@Fe3O4, Pt@Fe3O4, and CdS@Fe3O4, using spleen-deficient rats. Spleen-deficient rats treated with naked and modified (Au, Cs, Pt) Fe3O4 microparticles (5000 mg/kg) displayed low toxicity. Only treatment with Cds@Fe3O4 resulted in elevated toxicity and death in rats. Au-, Ag-, and Pt-modified Fe3O4 increased the rate of hemolysis in rats relative to treatment with naked Fe3O4. Despite this, Au- and Pt-modified Fe3O4 increased the biocompatibility and reduced DNA and chromosome damage in rats relative to naked Fe3O4. While Cs@Fe3O4 microparticles displayed a higher biocompatibility than naked Fe3O4, they displayed no significant reduction in DNA and chromosome damage. In summary, Au and Pt surface-modified Fe3O4 microparticles display elevated in vivo biosafety compared to unmodified particles. The precious metal material, with good biological compatibility, surface modification of Fe3O4 is an effective strategy to improve the overall safety and potential therapeutic utility of these magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Álvarez, S. A. C., Ilyina, A., Jáuregui, K. M. G., Hernández, J. L. M., Gutiérrez, B. B. V., Ceniceros, E. P. S., & Campos, R. G. L. (2014). Isolation and immobilization of influenza virus-specific N-SA-α-2, 3-Gal receptors using magnetic nanoparticles coated with chitosan and Maackia amurensis lectin. Applied Biochemistry and Biotechnology, 174(5), 1945–1958.

    Article  Google Scholar 

  2. Deng, H., & Lei, Z. (2013). Preparation and characterization of hollow Fe3O4/SiO2@ PEG–PLA nanoparticles for drug delivery. Composites Part B: Engineering, 54, 194–199.

    Article  CAS  Google Scholar 

  3. Wang, C., Wei, Y., Jiang, H., & Sun, S. (2009). Tug-of-war in nanoparticles: competitive growth of Au on Au–Fe3O4 nanoparticles. Nano Letters, 9, 4544–4547.

    Article  CAS  Google Scholar 

  4. Jiang, X. M., Wang, L. M., Wang, J., & Chen, C. Y. (2012). Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment. Applied Biochemistry and Biotechnology, 166(6), 1533–1551.

    Article  CAS  Google Scholar 

  5. Warland, A., Antoniak, C., Darbandi, M., Weis, C., Landers, J., Keune, W., & Wende, H. (2012). Effect of silica capping on the oxidation of Fe3O4 nanoparticles in dispersion revealed by x-ray absorption spectroscopy. Physical Review B, 85, 235113.

    Article  Google Scholar 

  6. Liu, Y., Zhou, J., Gong, J., Wu, W. P., Pan, Z. Q., & Gu, H. Y. (2013). The investigation of electrochemical properties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite. Electrochimica Acta, 111, 876–887.

    Article  CAS  Google Scholar 

  7. Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., & Yang, H. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2, 8.

    Article  Google Scholar 

  8. Bohara, R. A., & Pawar, S. H. (2015). Innovative developments in bacterial detection with magnetic nanoparticles. Applied Biochemistry and Biotechnology, 1–15.

  9. Muhlfeld, C., Mayhew, T. M., Gher, P., & Rothen-Rutishauser, B. (2007). A novel quantitative method for analyzing the distributions of nanoparticles between different tissue and intracellular compartments. J. Aerosol Med, 20, 395–407.

    Article  CAS  Google Scholar 

  10. Samra, Z. Q., Shabir, S., Rehmat, Z., Zaman, M., Nazir, A., Dar, N., & Athar, M. A. (2010). Synthesis of cholesterol-conjugated magnetic nanoparticles for purification of human paraoxonase 1. Applied Biochemistry and Biotechnology, 162(3), 671–686.

    Article  CAS  Google Scholar 

  11. Xie, J., Huang, J., Li, X., Sun, S., & Chen, X. (2009). Iron oxide nanoparticle platform for biomedical applications. Current Medicinal Chemistry, 16, 1278–1294.

    Article  CAS  Google Scholar 

  12. Kouassi, G. K., & Irudayaraj, J. (2006). Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Analytical Chemistry, 78, 3234–3241.

    Article  CAS  Google Scholar 

  13. Seenuvasan, M., Kumar, K. S., Malar, C. G., Preethi, S., Kumar, M. A., & Balaji, N. (2014). Characterization, analysis, and application of fabricated Fe3O4-chitosan-pectinase nanobiocatalyst. Applied Biochemistry and Biotechnology, 172(5), 2706–2719.

    Article  CAS  Google Scholar 

  14. Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J., & Hussain, S. M. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences, 101, 239–253.

    Article  CAS  Google Scholar 

  15. Shailendra Pratap Singh, M. F., Rahman, U. S. N., Murty, M. M., & Grover, P. (2013). Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicology and Applied Pharmacology, 266, 56–56.

  16. Li, Y., Liu, J., Zhong, Y., et al. (2011). Biocompatibility of Fe3O4@ Au composite magnetic nanoparticles in vitro and in vivo. International Journal of Nanomedicine, 6, 2805.

    Article  CAS  Google Scholar 

  17. Liu, Y., Han, T., Chen, C., Bao, N., Yu, C. M., & Gu, H. Y. (2011). A novel platform of hemoglobin on core-shell structurally Fe3O4@Au nanoparticles and its direct electrochemistry. Electrochimica Acta, 56, 3248–3257.

    Article  Google Scholar 

  18. Yu, C. M., Guo, J. W., & Gu, H. Y. (2009). Direct electrochemical behavior of hemoglobin at surface of Au@Fe3O4 magnetic nanoparticles. Microchimica Acta, 166, 215–220.

    Article  CAS  Google Scholar 

  19. Chen, C., Liu, Y., & Gu, H. Y. (2010). Cellular biosensor based on red blood cells immobilized on Fe3O4 core/Au shell nanoparticles for hydrogen peroxide electroanalysis. Microchimica Acta, 17, 371–376.

    Article  Google Scholar 

  20. OECD Guidelines 420 acute oral toxicity–fixed dose procedure (2001)

  21. RDey, R. K., & Ray, A. R. (2003). Synthesis, characterization, and blood compatibility of polyamidoamines copolymers. Biomaterials, 24, 2985–2993.

    Article  Google Scholar 

  22. Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T. G., & Doak, S. H. (2009). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30, 3891–3914.

    Article  CAS  Google Scholar 

  23. Tice, R. R. (1995). Applications of the single cell gel assay to environmental biomonitoring for genotoxic pollutants. Environmental Science Research, 50, 69–80.

    CAS  Google Scholar 

  24. Silva, J., Freitas, T. R. O., Marinho, J. R., Speit, G., & Erdtmann, B. (2000). An alkaline single-cell gel electrophoresis (comet) assay for environmental biomonitoring with native rodents. Genetics and Molecular Biology, 23, 241–245.

    Article  Google Scholar 

  25. Karamipour, S., Sadjadi, M. S., & Farhadyar, N. (2015). Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core–shell for targeted drug delivery application. Spectrochimica Acta Part A, 148, 146–155.

    Article  CAS  Google Scholar 

  26. Saravanakumar, T., Palvannan, T., Kim, D. H., & Park, S. M. (2014). Optimized immobilization of peracetic acid producing recombinantacetyl xylan esterase on chitosan coated-Fe3O4 magnetic nanoparticles. Process Biochemistry, 49, 1920–1928.

    Article  CAS  Google Scholar 

  27. Lin, S. X., Shen, S. M., Lu, D. B., Wang, C. M., & Gao, H. J. (2013). Synthesis of Pt nanoparticles anchored on grapheneencapsulated Fe3O4 magnetic nanospheres and their use as catalysts for methanol oxidation. Carbon, 53, 112–119.

    Article  CAS  Google Scholar 

  28. Li, D., Xie, J. J., Zhang, Y., Qiao, R., Li, S., & Li, Z. Q. (2015). Convenient synthesis of magnetically recyclable Fe3O4@C@CdS photocatalysts by depositing CdS nanocrystals on carbonized ferrocene. Journal of Alloys and Compounds, 646, 978–982.

    Article  CAS  Google Scholar 

  29. Li, X., Wang, L., Fan, Y., Feng, Q., Cui, F. Z., & Watari, F. (2013). Nanostructured scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A, 101, 2424–2435.

    Article  Google Scholar 

  30. Autian J, Kronenthal RL, Oser Z, Martin E. (1975). Polymer Science and Technology, Vol. 8: Polymers in Medicine and Surgery, Plenum Press, New York: 181.

  31. Lu, S., Xia, D., Huang, G., Jing, H., Wang, Y., & Gu, H. (2010). Concentration effect of gold nanoparticles on proliferation of keratinocytes. Colloids and Surfaces B: Biointerfaces, 81, 406–411.

    Article  CAS  Google Scholar 

  32. Bos, E. J., Wagner, A., Mahrholdt, H., Thompson, R. B., Morimoto, Y., Sutton, B. S., & Taylor, D. A. (2003). Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transplantation, 12, 743–756.

    Article  Google Scholar 

  33. Dave, S. R., & Gao, X. (2009). Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 1, 583–609.

    Article  CAS  Google Scholar 

  34. Warland, A., Antoniak, C., Darbandi, M., Weis, C., Landers, J., Keune, W., & Wende, H. (2012). Effect of silica capping on the oxidation of Fe3O4 nanoparticles in dispersion revealed by x-ray absorption spectroscopy. Physical Review B, 85, 235113.

    Article  Google Scholar 

  35. Arsianti, M., Lim, M., Lou, S. N., Goon, I. Y., Marquis, C. P., & Amal, R. (2011). Bi-functional gold-coated magnetite composites with improved biocompatibility. Journal of Colloid and Interface Science, 354, 536–545.

    Article  CAS  Google Scholar 

  36. Riggio, C., Calatayud, M. P., Hoskins, C., Pinkernelle, J., Sanz, B., Torres, T. E., & Cuschieri, A. (2012). Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance. International Journal of Nanomedicine, 7, 3155–3166.

    CAS  Google Scholar 

  37. Chen, D., Tang, Q., & Li, X. (2012). Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells [J]. International Journal of Nanomedicine, 7, 4973.

    Article  CAS  Google Scholar 

  38. Carvalho, I. M., Melo-Cavalcante, A. A., Dantas, A. F., Pereira, D. L., Rocha, F. C. C., Andrade, T. J., & Da Silva, J. (2010). Genotoxicity of sodium metabisulfite in mouse tissues evaluated by the comet assay and the micronucleus test. Mutation Research, 720, 58–61.

    Article  Google Scholar 

  39. Costa, S., Pina, C., Coelho, P., Costa, C., Silva, S., Porto, B., & Teixeira, J. P. (2011). Occupational exposure to formaldehyde: genotoxic risk evaluation by comet assay and micronucleus test using human peripheral lymphocytes. Journal of Toxicology and Environmental Health, Part A, 74, 1040–1051.

    Article  CAS  Google Scholar 

  40. Rocco, L., Peluso, C., & Stingo, V. (2012). Micronucleus test and comet assay for the evaluation of zebrafish genomic damage induced by erythromycin and lincomycin. Environmental Toxicology, 27, 598–604.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21175075), the Natural Science Foundation of Jiangsu Province (BK2012651, BK2012652, BK2011047), the Application Research Item of Nantong City (BK2013028), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the “Dr. Offer plan” of Jiangsu province.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Ying Gu.

Additional information

Dong-Lin Xia and Yan-Pei Chen equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, DL., Chen, YP., Chen, C. et al. Comparative Study of Biosafety, DNA, and Chromosome Damage of Different-Materials-Modified Fe3O4 in Rats. Appl Biochem Biotechnol 177, 1069–1082 (2015). https://doi.org/10.1007/s12010-015-1797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1797-6

Keywords

Navigation