Skip to main content
Log in

Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the feasibility of immobilizing Yarrowia lipolytica lipase lip2 on epoxy microspheres with or without gelatin modifications. The activity of lipase immobilized on gelatin-modified supports was twofold higher than those immobilized on native supports. There was no significant difference in the Michaelis-Menten constant (K M ) between the two immobilized lipases. However, lipase immobilized on gelatin modified supports showed an approximately fourfold higher V max than lipase immobilized on native supports. Lipase immobilization on the gelatin-modified support exhibited a significantly improved operational stability in an esterification system. After it was reused for a total of 35 batches, the ester conversion of lipase immobilized on gelatin-modified and native microspheres was 83 and 60 %, respectively. Furthermore, the immobilized lipase could be stored at 4 °C for 12 months without any loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Fickers, P., Marty, A., & Nicaud, J. M. (2011). The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnology Advances, 29, 632–644.

    Article  CAS  Google Scholar 

  2. Bai, W., Yang, Y., Tao, X., Chen, J., & Tan, T. (2011). Immobilization of lipase on aminopropyl-grafted mesoporous silica nanotubes for the resolution of (R, S)-1-phenylethanol. Journal of Molecular Catalysis B: Enzymatic, 76, 82–88.

    Article  Google Scholar 

  3. Liu, Y., Wang, F., & Tan, T. (2009). Effects of alcohol and solvent on the performance of lipase from Candida sp. in enantioselective esterification of racemic ibuprofen. Journal of Molecular Catalysis B: Enzymatic, 56, 126–130.

    Article  CAS  Google Scholar 

  4. Liu, W., Wang, F., Tan, T., & Chen, B. (2013). Lipase-catalyzed synthesis and characterization of polymers by cyclodextrin as support architecture. Carbohydrate Polymers, 92, 633–640.

    Article  CAS  Google Scholar 

  5. Tan, T., Lu, J., Nie, K., Deng, L., & Wang, F. (2010). Biodiesel production with immobilized lipase: a review. Biotechnology Advances, 28, 628–634.

    Article  CAS  Google Scholar 

  6. Tielmann, P., Kierkels, H., Zonta, A., Ilie, A., & Reetz, M. T. (2014). Increasing the activity and enantioselectivity of lipases by sol–gel immobilization: further advancements of practical interest. Nanoscale, 6, 6220–6228.

    Article  CAS  Google Scholar 

  7. Ren, Y., Rivera, J. G., He, L., Kulkarni, H., Lee, D.-K., & Messersmith, P. B. (2011). Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnology, 11, 63.

    Article  CAS  Google Scholar 

  8. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42, 6290–6307.

    Article  CAS  Google Scholar 

  9. Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A. N., Rodrigues, R. C., & Fernandez-Lafuente, R. (2013). Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules, 14, 2433–2462.

    Article  CAS  Google Scholar 

  10. Liu, S., Lin, B., Yang, X., & Zhang, Q. (2007). Carbon-nanotube-enhanced direct electron-transfer reactivity of hemoglobin immobilized on polyurethane elastomer film. The Journal of Physical Chemistry. B, 111, 1182–1188.

    Article  CAS  Google Scholar 

  11. Silva, J., Macedo, G., Rodrigues, D., Giordano, R., & Gonçalves, L. (2012). Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochemical Engineering Journal, 60, 16–24.

    Article  CAS  Google Scholar 

  12. Manzano, M. F. G., & Igarzabal, C. I. A. (2011). Immobilization of lipase from Candida rugosa on synthesized hydrogel for hydrolysis reaction. Journal of Molecular Catalysis B: Enzymatic, 72, 28–35.

    Article  CAS  Google Scholar 

  13. Ding, H., Shao, L., Liu, R., Xiao, Q., & Chen, J. (2005). Silica nanotubes for lysozyme immobilization. Journal of Colloid and Interface Science, 290, 102–106.

    Article  CAS  Google Scholar 

  14. Miletić, N., Rohandi, R., Vuković, Z., Nastasović, A., & Loos, K. (2009). Surface modification of macroporous poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins for improved Candida antarctica lipase B immobilization. Reactive and Functional Polymers, 69, 68–75.

    Article  Google Scholar 

  15. Rahman, A. U., Iqbal, M., Fu, D., Yaseen, M., Lv, Y., Omer, M., Garver, M., Yang, L., & Tan, T. (2012). Synthesis and characterization of reactive macroporous poly (glycidyl methacrylate-triallyl isocyanurate-ethylene glycol dimethacrylate) microspheres by suspension polymerization: effect of synthesis variables on surface area and porosity. Journal of Applied Polymer Science, 124, 915–926.

    Article  CAS  Google Scholar 

  16. Arıca, M. Y., & Bayramoğlu, G. (2006). Invertase reversibly immobilized onto polyethylenimine-grafted poly (GMA–MMA) beads for sucrose hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 38, 131–138.

    Article  Google Scholar 

  17. Du, T., Liu, B., Hou, X., Zhang, B., & Du, C. (2009). Covalent immobilization of glucose oxidase onto poly (St-GMA-NaSS) monodisperse microspheres via BSA as spacer arm. Applied Surface Science, 255, 7937–7941.

    Article  CAS  Google Scholar 

  18. Zhu, Y., Gao, C., He, T., & Shen, J. (2004). Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials, 25, 423–430.

    Article  CAS  Google Scholar 

  19. Meyer, M., & Morgenstern, B. (2003). Characterization of gelatine and acid soluble collagen by size exclusion chromatography coupled with multi angle light scattering (SEC-MALS). Biomacromolecules, 4, 1727–1732.

    Article  CAS  Google Scholar 

  20. Tan, T., Zhang, M., Wang, B., Ying, C., & Deng, L. (2003). Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochemistry, 39, 459–465.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Abramić, M., Leščić, I., Korica, T., Vitale, L., Saenger, W., & Pigac, J. (1999). Purification and properties of extracellular lipase from Streptomyces rimosus. Enzyme and Microbial Technology, 25, 522–529.

    Article  Google Scholar 

  23. Cui, C., Tao, Y., Li, L., Chen, B., & Tan, T. (2013). Improving the activity and stability of Yarrowia lipolytica lipase Lip2 by immobilization on polyethyleneimine-coated polyurethane foam. Journal of Molecular Catalysis B: Enzymatic, 91, 59–66.

    Article  CAS  Google Scholar 

  24. Zheng, W., & Zheng, Y. F. (2007). Gelatin-functionalized carbon nanotubes for the bioelectrochemistry of hemoglobin. Electrochemistry Communications, 9, 1619–1623.

    Article  CAS  Google Scholar 

  25. Ye, P., Xu, Z.-K., Wu, J., Innocent, C., & Seta, P. (2006). Nanofibrous poly (acrylonitrile- co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials, 27, 4169–4176.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 program) (2013CB733600, 2012CB725200), the National Nature Science Foundation of China (21106005), and National High-Tech R&D Program of China (863 Program) (2012AA022205D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biqiang Chen.

Additional information

Rong Xie and Caixia Cui are equal contributors.

Research Highlights

• Novel macroporous beads were used as the matrix for immobilization.

• A simple, efficient immobilization protocol on microsphere beads was developed.

• Gelatin was used to regulate the micro-environment.

• The activity of lipase immobilized on gelatin-support was improved two times.

• Lipase immobilized on gelatin-support could be reused 35 batches for esterification.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, R., Cui, C., Chen, B. et al. Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification. Appl Biochem Biotechnol 177, 771–779 (2015). https://doi.org/10.1007/s12010-015-1771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1771-3

Keywords

Navigation