Skip to main content
Log in

A NaBH4 Coupled Ninhydrin-Based Assay for the Quantification of Protein/Enzymes During the Enzymatic Hydrolysis of Pretreated Lignocellulosic Biomass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Accurate protein quantification is necessary in many of the steps during the enzymatic hydrolysis of pretreated lignocellulosic biomass, from the fundamental determination of enzyme kinetics to techno-economic assessments, such as the use of enzyme recycling strategies, evaluation of enzyme costs, and the optimization of various process steps. In the work described here, a modified, more rapid ninhydrin-based protein quantification assay was developed to better quantify enzyme levels in the presence of lignocellulosic biomass derived compounds. The addition of sodium borohydride followed by acid hydrolysis at 130 °C greatly reduced interference from monosaccharides and oligosaccharides and decreased the assay time 6-fold. The modified ninhydrin assay was shown to be more accurate as compared to various traditional colorimetric protein assays when commercial cellulase enzyme mixtures were quantified under typical pretreated lignocellulosic biomass enzymatic hydrolysis conditions. The relatively short assay time and microplate-reading capability of the modified assay indicated that the method could likely be used for high-throughput protein determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109, 1083–1087.

    Article  CAS  Google Scholar 

  2. Davis, R., Tao, L., Tan, E.C.D., Biddy, M.J., Beckham, G.T., Scarlata, C., et al. (2013). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. Technical report, National Renewable Energy Laboratory. Golden, CO.

  3. Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., et al. (2011). Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Technical report, National Renewable Energy Laboratory. Golden, CO.

  4. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  5. Adney, W. S., Dowe, N., Jennings, E. W., Mohagheghi, A., Yarbrough, J., & McMillan, J. D. (2012). Assessing the protein concentration in commercial enzyme preparations. Methods in Molecular Biology, 908, 169–180.

    CAS  Google Scholar 

  6. Arantes, V., & Saddler, J. N. (2011). Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnology for Biofuels, 4, 3.

    Article  CAS  Google Scholar 

  7. McMillan, J. D., Jennings, E. W., Mohagheghi, A., & Zuccarello, M. (2011). Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnology for Biofuels, 4, 29.

    Article  CAS  Google Scholar 

  8. Gupta, R., & Lee, Y. Y. (2013). In C. E. Wyman (Ed.), Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals (pp. 261–279). Chichester: Wiley.

    Chapter  Google Scholar 

  9. Adney, W. S., Mohagheghi, A., Thomas, S. R., & Himmel, M. E. (1996). In J. N. Saddler & M. H. Penner (Eds.), Enzymatic degradation of insoluble carbohydrates. Washington: American Chemical Society.

    Google Scholar 

  10. Schilling, E. D., Burchill, P. I., & Clayton, R. A. (1963). Anomalous reactions of ninhydrin. Analytical Biochemistry, 5, 1–6.

    Article  CAS  Google Scholar 

  11. Walker, J. M. (2002). The protein protocols handbook. Totowa: Humana Press.

    Book  Google Scholar 

  12. Zhang, Y. H., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  13. Aguiar, A., & Ferraz, A. (2007). Fe3+- and Cu2+-reduction by phenol derivatives associated with Azure B degradation in Fenton-like reactions. Chemosphere, 66, 947–954.

    Article  CAS  Google Scholar 

  14. Chauvet, J., & Lamy, F. (1990). Determination of soluble lignin and proteins in the presence of each other. Analytica Chimica Acta, 235, 299–306.

    Article  CAS  Google Scholar 

  15. Chylenski, P., Felby, C., Ostergaard, H. M., Gama, M., & Selig, M. J. (2012). Precipitation of Trichoderma reesei commercial cellulase preparations under standard enzymatic hydrolysis conditions for lignocelluloses. Biotechnology Letters, 34, 1475–1482.

    Article  CAS  Google Scholar 

  16. Folin, O., & Denis, W. (1912). On phosphotungstic-phosphomolybdic compounds as color reagents. Journal of Biological Chemistry, 12, 239–243.

    CAS  Google Scholar 

  17. Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., & Ingram, L. O. (2000). Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnology Progress, 16, 637–641.

    Article  CAS  Google Scholar 

  18. Turunen, J., & Turunen, K. (1967). Some factors causing colour in acetate pulp and cellulose acetate. Pure and Applied Chemistry, 67, 555–562.

    Google Scholar 

  19. Ximenes, E., Kim, Y., Mosier, N., Dien, B., & Ladisch, M. (2011). Deactivation of cellulases by phenols. Enzyme and Microbial Technology, 48, 54–60.

    Article  CAS  Google Scholar 

  20. D’Aniello, A., D’Onofrio, G., Pischetola, M., & Strazzullo, L. (1985). Effect of various substances on the colorimetric amino acid-ninhydrin reaction. Analytical Biochemistry, 144, 610–611.

    Article  Google Scholar 

  21. Friedman, M. (2004). Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. Journal of Agricultural and Food Chemistry, 52, 385–406.

    Article  CAS  Google Scholar 

  22. Kang, S. U., & Lubec, G. (2011). Determination of in-gel protein concentration by a ninhydrin-based method. Proteomics, 11, 481–484.

    Article  CAS  Google Scholar 

  23. Marks, D. L., Buchsbaum, R., & Swain, T. (1985). Measurement of total protein in plant samples in the presence of tannins. Analytical Biochemistry, 147, 136–143.

    Article  CAS  Google Scholar 

  24. Starcher, B. (2001). A ninhydrin-based assay to quantitate the total protein content of tissue samples. Analytical Biochemistry, 292, 125–129.

    Article  CAS  Google Scholar 

  25. Haven, M. O., & Jorgensen, H. (2013). The challenging measurement of protein in complex biomass-derived samples. Applied Biochemistry and Biotechnology, 172, 1–15.

    Google Scholar 

  26. Abdek-Akher, M., Hamilton, J. K., & Smith, F. (1951). The reduction of sugars with sodium borohydride. Journal of the American Chemical Society, 73, 4691–4692.

    Article  Google Scholar 

  27. Fountoulakis, M., & Lahm, H. (1998). Hydrolysis and amino acid composition analysis of proteins. Journal of Chromatography A, 826, 109–134.

    Article  CAS  Google Scholar 

  28. Chiou, S., & Wang, K. (1989). Peptide and protein hydrolysis by microwave irradiation. Journal of Chromatography B: Biomedical Sciences and Applications, 491, 424–431.

    Article  CAS  Google Scholar 

  29. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2006). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Technical report, National Renewable Energy Laboratory. Golden, CO.

  30. Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis, D., & Barrow, C. (2006). A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. Journal of Applied Phycology, 18, 445–450.

    Article  CAS  Google Scholar 

  31. Ng, T. K., & Zeikus, J. G. (1986). Synthesis of [14C]cellobiose with clostridium thermocellum cellobiose phosphorylase. Applied and Environmental Microbiology, 52, 902–904.

    CAS  Google Scholar 

  32. Zhu, Z., Sathitsuksanoh, N., & Percival Zhang, Y. H. (2009). Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst, 134, 2267–2272.

    Article  CAS  Google Scholar 

  33. Banka, R. R., & Mishra, S. (2002). Adsorption properties of the fibril forming protein from Trichoderma reesei. Enzyme and Microbial Technology, 31, 784–793.

    Article  CAS  Google Scholar 

  34. Nieves, R. A., Ehrman, C. I., Adney, W. S., Elander, R. T., & Himmel, M. E. (1997). Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World Journal of Microbiology and Biotechnology, 14, 301–304.

    Article  Google Scholar 

  35. Noble, J. E., & Bailey, M. J. (2009). Quantitation of protein. Methods in Enzymology, 463, 73–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank our colleague, Dr. Jinguang Hu, for all of his invaluable help. The Natural Sciences and Engineering Research Council of Canada (NSERC) and the Bioconversion network financially supported this work. We also thank our colleagues at Novozymes for their generous donation of enzyme preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack N. Saddler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mok, Y.K., Arantes, V. & Saddler, J.N. A NaBH4 Coupled Ninhydrin-Based Assay for the Quantification of Protein/Enzymes During the Enzymatic Hydrolysis of Pretreated Lignocellulosic Biomass. Appl Biochem Biotechnol 176, 1564–1580 (2015). https://doi.org/10.1007/s12010-015-1662-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1662-7

Keywords

Navigation