Skip to main content
Log in

An Organophosphorus Hydrolase-Based Biosensor for Direct Detection of Paraoxon Using Silica-Coated Magnetic Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rapid detection of organophosphorous (OP) compounds such as paraoxon would allow taking immediate decision on efficient decontamination procedures and could prevent further damage and potential casualties. In the present study, a biosensor based on nanomagnet-silica core-shell conjugated to organophosphorous hydrolase (OPH) enzyme was designed for detection of paraoxon. Coumarin1, a competitive inhibitor of the OPH enzyme, was used as a fluorescence-generating molecule. Upon excitation of cumarin1 located at the active site of the enzyme, i.e., OPH, the emitted radiations were intensified due to the mirroring effect of the nanomagnet-silica core-shell conjugated to the enzyme. In presence of paraoxon and consequent competition with the fluorophore in occupying enzyme’s active site, a significant reduction in emitted radiations was observed. This reduction was proportional to paraoxon concentration in the sample. The method worked in the 10- to 250-nM concentration range had a low standard deviation (with a coefficient of variation (CV) of 6–10 %), and the detection limit was as low as 5 × 10−6 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Du, D., Wang, M., Cai, J., & Zhang, A. (2010). Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide. Sensors Actuators B Chem, 8, 337–341.

    Google Scholar 

  2. Du, D., Chen, A., Xie, Y., Zhang, A., & Lin, Y. (2011). Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase. Biosensors and Bioelectronics, 26, 3857–3863.

    Article  CAS  Google Scholar 

  3. Lu, D., Wang, J., Wang, L., Du, D., Timchalk, C., & Barry, R. (2011). A novel nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents. Advanced Functional Materials, 21, 4371–4378.

    Article  CAS  Google Scholar 

  4. Susan, J., Dyk, V., & Pletschke, B. (2011). Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere, 82, 291–307.

    Article  Google Scholar 

  5. Pohanka, M. (2012). Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Analytical Letters, 45, 367–374.

    Article  CAS  Google Scholar 

  6. Aragay, G., Pino, F., & Merkoçi, A. (2012). Nanomaterials for Sensing and Destroying Pesticides. Chemical Research, 112, 5317–5338.

    CAS  Google Scholar 

  7. Sassolas, A., Simón, B. P., & Marty, J. L. (2012). Biosensors for Pesticide Detection: New Trends. American Journal of Analytical Chemistry, 3, 210–232.

    Article  CAS  Google Scholar 

  8. Mulbry, W. W., Karns, J. S., Kearney, P. C., Nelson, J. O., Mc Daniel, C. S., & Wild, J. R. (1986). Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Applied and Environmental Microbiology, 51, 929–930.

    Google Scholar 

  9. Simonian, A., Good, T., Wang, S., & Wild, J. (2005). Nanoparticle based optical biosenses for the direct detection of organophosphate chemical warfare agent and pesticides. Analytica Chimica Acta, 534, 69–77.

    Article  CAS  Google Scholar 

  10. Calleri, E., Temporini, C., Massolini, G., Caccialanza, G., & Penicillin, G. (2004). Penicillin G acylasebased stationary phases. Journal of Pharmaceutical and Biomedical Analysis, 35, 243–258.

    Article  CAS  Google Scholar 

  11. Chi-Fang, W., Hyung, J. C., James, J., & Bentley, E. (2002). GFP-visualized immobilized enzymes: Degradation of paraoxon via organophosphorus hydrolase in a packed column. Biotechnology Bioengineering, 77, 212–218.

    Article  Google Scholar 

  12. Luckarift, H. R., Spain, J. C., Naik, R. R., & Stone, M. O. (2004). Enzyme immobilization in a biomimetic silica support. Nature Biotechnology, 22, 211–213.

    Article  CAS  Google Scholar 

  13. Du, G. H., Liu, Z. L., Xia, X., Chu, Q., & Zhang, S. M. (2006). Characterization and application of Fe3O4/SiO2 nanocomposites. Journal of Sol-Gel Science and Technology, 39, 285–291.

    Article  CAS  Google Scholar 

  14. Arruebo, M., Fernandez-Pacheco, R., Velasco, B., Marquina, C., Arbiol, J., Irusta, S., Ibarra, M. R., & Santamara, J. (2007). Antibody-Functionalized Hybrid Superparamagnetic Nanoparticles. Advanced Functional Materials, 17, 1473–1479.

    Article  CAS  Google Scholar 

  15. Choi, J., Kim, J., Lee, Y., Kim, I., Parka, Y., & Hur, N. (2007). Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes. Chem. Commun. 1644–1646.

  16. Kamelipour, N., Mohsenifar, A., Tabatabaei, M., Rahmani-Cherati, T., Khoshnevisan, K., Allameh, A., Milani, M., Najavand, S., & Etemadikia, B. (2014). Fluorometric determination of paraoxon in human serum using a gold nanoparticle-immobilized organophosphorus hydrolase and coumarin 1 as a competitive inhibitor. Microchimica Acta, 181, 239–248.

    Article  CAS  Google Scholar 

  17. Chou, K. S., & Lee, S. J. (2009). Facile methods to synthesize nanaosized iron oxide colloidal dispersion and its characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 336, 23–28.

    Article  CAS  Google Scholar 

  18. Hashemifard, N., Mohsenifar, A., Ranjbar, B., Allameh, A., Lotfi, A. S., & Etemadikia, B. (2010). Fabrication and kinetic studies of a novel silver nanoparticles-glucose oxidase bioconjugate. Analytica Chimica Acta, 675, 181–184.

    Article  CAS  Google Scholar 

  19. Shanehsaz, M., Mohsenifar, A., Hasannia, S., & Pirooznia, N. (2013). Detection of Helicobacter pylori with a nanobiosensor based on fluorescence resonance energy transfer using CdTe quantum dots. Microchimica Acta, 180, 195–202.

    Article  CAS  Google Scholar 

  20. Zekavati, R., Shahabeddin, S., Hashemi, S. J., Rahmani, T., Tabatabaei, M., Mohsenifar, A., & Bayat, M. (2013). Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots. Microchimica Acta, 180, 1217–1223.

    Article  CAS  Google Scholar 

  21. Lessard-Viger, M., Rioux, M., Rainville, L., & Boudreau, D. (2009). FRET enhancement in multilayer core-shell nanoparticles. Nano Letters, 9, 3066–3071.

    Article  CAS  Google Scholar 

  22. Thakur, S., Kumar, P., Reddy, M., Siddavattam, D., & Paul, A. (2013). Enhancement in sensitivity of fluorescence based assay for organophosphates detection by silica coated silver nanoparticles using organophosphate hydrolase. Sensors and Actuators B: Chemical, 178, 458–464.

    Article  CAS  Google Scholar 

  23. Kim, C., Choi, B., Seo, J., Lim, G., & Cha, H. (2013). Site-specific immobilization of microbes using carbon nanotubes and dielectrophoretic force for microfluidic applications. Biosensors and Bioelectronics, 41, 199–204.

    Article  CAS  Google Scholar 

  24. Sahin, A., Dooley, K., Cropek, D., West, A., & Banta, S. (2011). A dual enzyme electrochemical assay for the detection of organophosphorus compounds using organophosphorus hydrolase and horseradish peroxidase Sensor. Sensors and Actuators B: Chemical, 158, 353–360.

    Article  CAS  Google Scholar 

  25. Pedrosa, V. A., Paliwal, S., Balasubramanian, S., Nepal, D., Davis, V., Wild, J., Ramanculov, E., & Simonian, A. (2010). Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids and Surfaces B, 77, 69–74.

    Article  CAS  Google Scholar 

  26. Wang, J., Chen, L., Mulchandani, A., Mulchandani, P., & Chen, W. (1999). Remote biosensor for in-situ monitoring of organophosphate nerve agents. Electroanalysis, 11, 866–869.

    Article  CAS  Google Scholar 

  27. Mulchandani, P., Mulchandani, A., Kaneva, I., & Chen, W. (1999). Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosensors and Bioelectronics, 14, 77–85.

    Article  CAS  Google Scholar 

  28. Roger, K., Wang, Y., Mulchandani, A., Mulchandani, P., & Chen, W. (1999). Organophosphorus hydrolase-based fluorescence assay for organophosphate pesticides. Biotechnology Progress, 15, 517–522.

    Article  Google Scholar 

  29. Mulchandani, A., Pan, S., & Chen, W. (1999). Fiber-optic biosensor for direct determination of organophosphate nerve agents. Biotechnology Progress, 15, 130–134.

    Article  CAS  Google Scholar 

  30. Mulchandani, P., Mulchandani, A., Chen, W., Wang, J., & Chen, L. (1999). Amperometric thick-film Strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase. Analytical Chemistry, 71, 2246–2249.

    Article  CAS  Google Scholar 

  31. White, B., & Harmon, H. (2005). Optical solid-state detection of organophosphates using organophosphate hydrolase. Biosensors and Bioelectronics, 20, 1977–1983.

    Article  CAS  Google Scholar 

  32. Lei, Y., Mulchandani, P., Chen, W., & Mulchandani, A. (2007). Biosensor for direct determinationof fenitrothion and epn using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. Applied Biochemistry and Biotechnology, 136, 243–250.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nanozino Co. and Nanosystems Research Team (NRTeam) for financially supporting the present research.

Compliance with Ethical Standards

The authors declare no conflict of interest. No ethical approval was required.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Afshin Mohsenifar or Meisam Tabatabaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaksarinejad, R., Mohsenifar, A., Rahmani-Cherati, T. et al. An Organophosphorus Hydrolase-Based Biosensor for Direct Detection of Paraoxon Using Silica-Coated Magnetic Nanoparticles. Appl Biochem Biotechnol 176, 359–371 (2015). https://doi.org/10.1007/s12010-015-1579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1579-1

Keywords

Navigation