Skip to main content
Log in

Mechanisms for Solubilization of Various Insoluble Phosphates and Activation of Immobilized Phosphates in Different Soils by an Efficient and Salinity-Tolerant Aspergillus niger Strain An2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mechanisms for solubilization of different types of phosphates and activation of immobilized phosphates in different types of soils by an efficient fungal strain An2 were explored and evaluated in this study. An2 was isolated from a Chinese cabbage rhizosphere soil and identified as Aspergillus niger. It could fast release up to 1722, 2066, and 2356 mg L−1 of soluble phosphorus (P) from 1 % Ca3(PO4)2, Mg3(PO4)2, and AlPO4 (Ca-P, Mg-P, and Al-P) and 215 and 179 mg L−1 from 0.5 % FePO4 and rock phosphate (Fe-P and RP), respectively. HPLC assay demonstrated that An2 mainly secreted oxalic acid to solubilize Ca-P, Mg-P, Al-P, and Fe-P whereas secreted tartaric acid to solubilize RP. Furthermore, An2 could tolerate salinity up to 4 % NaCl without impairing its phosphate-solubilizing ability. The simulation experiments validated that An2 was able to effectively activate immobilized phosphates in general calcareous, acidic, as well as saline-alkali soils with high total P content. This study shows new insights into the mechanisms for microbial solubilization of different types of phosphates and supports the future application of strain An2 in different types of soils to effectively activate P for plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Takahashi, S., & Anwar, M. R. (2007). Field Crops Research, 101, 160–171.

    Article  Google Scholar 

  2. Zou, X., Binkley, D., & Doxtader, K. G. (1992). Plant and Soil, 147, 243–250.

    Article  CAS  Google Scholar 

  3. Shenoy, V., & Kalagudi, G. (2005). Biotechnology Advances, 23, 501–513.

    Article  CAS  Google Scholar 

  4. Viruel, E., Lucca, M. E., & Siñeriz, F. (2011). Archives of Microbiology, 193, 489–496.

    Article  CAS  Google Scholar 

  5. Jayashree, S., Vadivukkarasi, P., Anand, K., Kato, Y., & Seshadri, S. (2011). Archives of Microbiology, 193, 543–552.

    Article  CAS  Google Scholar 

  6. Vassilev, N., Eichler-Löbermann, B., & Vassileva, M. (2012). Microbiology and Biotechnology, 95, 851–859.

    Article  CAS  Google Scholar 

  7. Son, H. J., Park, G. T., Cha, M. S., & Heo, M. S. (2006). Bioresource Technology, 97, 204–210.

    Article  CAS  Google Scholar 

  8. Schindler, D. W., Hecky, R., Findlay, D., Stainton, M., Parker, B., Paterson, M., Beaty, K., Lyng, M., & Kasian, S. (2008). Proceedings of the National Academy of Sciences of the United States of America, 105, 11254–11258.

    Article  CAS  Google Scholar 

  9. Singh, H., & Reddy, M. S. (2011). European Journal of Soil Biology, 47, 30–34.

    Article  CAS  Google Scholar 

  10. Bashan, Y., Kamnev, A. A., & de-Bashan, L. E. (2013). Biology and Fertility of Soils, 49, 1–2.

    Article  Google Scholar 

  11. Carpenter, S. R. (2008). Proceedings of the National Academy of Sciences of the United States of America, 105, 11039–11040.

    Article  CAS  Google Scholar 

  12. Mehta, P., Walia, A., Chauhan, A., & Shirkot, C. (2013). Archives of Microbiology, 195, 357–369.

    Article  CAS  Google Scholar 

  13. Kaur, G., & Sudhakara Reddy, M. (2014). European Journal of Soil Biology, 61, 35–40.

    Article  CAS  Google Scholar 

  14. Rodríguez, H., & Fraga, R. (1999). Biotechnology Advances, 17, 319–339.

    Article  Google Scholar 

  15. Rajput, M. S., Kumar, G. N., & Rajkumar, S. (2013). Archives of Microbiology, 195, 81–88.

    Article  CAS  Google Scholar 

  16. Vassilev, N., Vassileva, M., & Nikolaeva, I. (2006). Microbiology and Biotechnology, 71, 137–144.

    Article  CAS  Google Scholar 

  17. Farhat, M. B., Farhat, A., Bejar, W., Kammoun, R., Bouchaala, K., Fourati, A., Antoun, H., Bejar, S., & Chouayekh, H. (2009). Archives of Microbiology, 191, 815–824.

    Article  Google Scholar 

  18. Mittal, V., Singh, O., Nayyar, H., Kaur, J., & Tewari, R. (2008). Soil Biology and Biochemistry, 40, 718–727.

    Article  CAS  Google Scholar 

  19. Jain, R., Saxena, J., & Sharma, V. (2010). Applied Soil Ecology, 46, 90–94.

    Article  Google Scholar 

  20. Whitelaw, M. (1999). Advances in Agronomy, 69, 99–151.

    Article  Google Scholar 

  21. Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Archives of Agronomy and Soil Science, 56, 73–98.

    Article  CAS  Google Scholar 

  22. Wakelin, S. A., Warren, R. A., Harvey, P. R., & Ryder, M. H. (2004). Fertility of Soils, 40, 36–43.

    Article  CAS  Google Scholar 

  23. Chang, C. H., & Yang, S. S. (2009). Bioresource Technology, 100, 1648–1658.

    Article  CAS  Google Scholar 

  24. Ogbo, F. C. (2010). Bioresource Technology, 101, 4120–4124.

    Article  CAS  Google Scholar 

  25. Ebina, J., Tsutsui, T., & Shirai, T. (1983). Water Research, 17, 1721–1726.

    Article  CAS  Google Scholar 

  26. Murphy, J., & Riley, J. (1962). Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  27. Nautiyal, C. S. (1999). FEMS Microbiology Letters, 170, 265–270.

    Article  CAS  Google Scholar 

  28. Henry, T., Iwen, P. C., & Hinrichs, S. H. (2000). Clinical Microbiology, 38, 1510–1515.

    CAS  Google Scholar 

  29. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  30. Xiao, C. Q., Chi, R. A., Huang, X. H., Zhang, W. X., Qiu, G. Z., & Wang, D. Z. (2008). Ecological Engineering, 33, 187–193.

    Article  CAS  Google Scholar 

  31. Park, K. H., Lee, O. M., Jung, H. I., Jeong, J. H., Jeon, Y. D., Hwang, D. Y., Lee, C. Y., & Son, H. J. (2010). Microbiology and Biotechnology, 86, 947–955.

    Article  CAS  Google Scholar 

  32. Xiao, C., Chi, R., Li, X., Xia, M., & Xia, Z. (2011). Applied Biochemistry and Biotechnology, 165, 719–727.

    Article  CAS  Google Scholar 

  33. Xiao, C., Chi, R., He, H., Qiu, G., Wang, D., & Zhang, W. (2009). Applied Biochemistry and Biotechnology, 159, 330–342.

    Article  CAS  Google Scholar 

  34. Schneider, K., Van Straaten, P., Orduña, D., Mira, R., Glasauer, S., Trevors, J., Fallow, D., & Smith, P. (2010). Journal of Applied Microbiology, 108, 366–374.

    Article  CAS  Google Scholar 

  35. Gulati, A., Sharma, N., Vyas, P., Sood, S., Rahi, P., Pathania, V., & Prasad, R. (2010). Archives of Microbiology, 192, 975–983.

    Article  CAS  Google Scholar 

  36. Jeong, S., Moon, H. S., Nam, K., Kim, J. Y., & Kim, T. S. (2012). Chemosphere, 88, 204–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 31070105) and the China Geological Survey Project (No. 12120113015200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Luo, L., Yang, J. et al. Mechanisms for Solubilization of Various Insoluble Phosphates and Activation of Immobilized Phosphates in Different Soils by an Efficient and Salinity-Tolerant Aspergillus niger Strain An2. Appl Biochem Biotechnol 175, 2755–2768 (2015). https://doi.org/10.1007/s12010-014-1465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1465-2

Keywords

Navigation