Skip to main content
Log in

Improving the Secretory Production of the Heterologous Protein in Pichia pastoris by Focusing on Protein Folding

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pichia pastoris has currently been developed as an effective host system for the expression of heterologous genes owing to its potential use for the production of soluble and high-yield proteins. However, the secretory production of the different heterologous proteins in P. pastoris varies widely. Some factors restrict the effective secretory production of heterologous proteins in P. pastoris, among which the folding and processing of proteins is a major one. Besides optimizing the fermentative process, current strategies focus on investigating protein folding process. Thus, this paper is the first time to review the improvement of the secretory production of the heterologous protein in P. pastoris by focusing on its folding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cereghino, G. P. L., Cereghino, J. L., Ilgen, C., & Cregg, J. M. (2002). Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Current Opinion in Biotechnology, 13, 329–332.

    Article  Google Scholar 

  2. Daly, R., & Hearn, M. T. (2005). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition, 18, 119–138.

    Article  CAS  Google Scholar 

  3. Cregg, J., Cereghino, J., Shi, J., & Higgins, D. (2000). Recombinant protein expression in Pichia pastoris. Molecular Biotechnology, 16, 23–52.

    Article  CAS  Google Scholar 

  4. Cereghino, J. L., & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24, 45–66.

    Article  CAS  Google Scholar 

  5. Cereghino, G., Sunga, A., Cereghino, J., & Cregg, J. (2002). Expression of foreign genes in the yeast Pichia pastoris: principles and methods.

  6. Yu, P. (2007). A new approach to the production of the recombinant SOD protein by methylotrophic Pichia pastoris. Applied Microbiology and Biotechnology, 74, 93–98.

    Article  CAS  Google Scholar 

  7. De Schutter, K., Lin, Y. C., Tiels, P., Van Hecke, A., Glinka, S., Weber-Lehmann, J., Rouze, P., Van de Peer, Y., & Callewaert, N. (2009). Genome sequence of the recombinant protein production host Pichia pastoris. Nature Biotechnology, 27, 561–566.

    Article  Google Scholar 

  8. Porro, D., Sauer, M., Branduardi, P., & Mattanovich, D. (2005). Recombinant protein production in yeasts. Molecular Biotechnology, 31, 245–259.

    Article  CAS  Google Scholar 

  9. Schröder, M. (2008). Engineering eukaryotic protein factories. Biotechnology Letters, 30, 187–196.

    Article  Google Scholar 

  10. Abad, S., Kitz, K., Hörmann, A., Schreiner, U., Hartner, F. S., & Glieder, A. (2010). Real-time PCR-based determination of gene copy numbers in Pichia pastoris. Biotechnology Journal, 5, 413–420.

    Article  CAS  Google Scholar 

  11. Sørensen, H. P., & Mortensen, K. K. (2005). Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, 115, 113–128.

    Article  Google Scholar 

  12. Zhang, W., Zhao, H. L., Xue, C., Xiong, X. H., Yao, X. Q., Li, X. Y., Chen, H. P., & Liu, Z. M. (2006). Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins. Biotechnology Progress, 22, 1090–1095.

    Article  CAS  Google Scholar 

  13. Gasser, B., Sauer, M., Maurer, M., Stadlmayr, G., & Mattanovich, D. (2007). Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Applied and Environmental Microbiology, 73, 6499–6507.

    Article  CAS  Google Scholar 

  14. Xu, P., & Robinson, A. S. (2009). Decreased secretion and unfolded protein response up-regulation are correlated with intracellular retention for single-chain antibody variants produced in yeast. Biotechnology and Bioengineering, 104, 20–29.

    Article  CAS  Google Scholar 

  15. Anelli, T., & Sitia, R. (2008). Protein quality control in the early secretory pathway. The EMBO Journal, 27, 315–327.

    Article  CAS  Google Scholar 

  16. Buck, T. M., Wright, C. M., & Brodsky, J. L. (2007). The activities and function of molecular chaperones in the endoplasmic reticulum. Seminars in Cell and Developmental Biology, 18, 751–761.

    Article  CAS  Google Scholar 

  17. Meunier, L., Usherwood, Y. K., Chung, K. T., & Hendershot, L. M. (2002). A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Molecular Biology of the Cell, 13, 4456–4469.

    Article  CAS  Google Scholar 

  18. Sitia, R., & Braakman, I. (2003). Quality control in the endoplasmic reticulum protein factory. Nature, 426, 891–894.

    Article  CAS  Google Scholar 

  19. Kleizen, B., & Braakman, I. (2004). Protein folding and quality control in the endoplasmic reticulum. Current Opinion in Cell Biology, 16, 343–349.

    Article  CAS  Google Scholar 

  20. Nishikawa, S., Fewell, S. W., Kato, Y., Brodsky, J. L., & Endo, T. (2001). Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. Journal of Cell Biology, 153, 1061–1070.

    Article  CAS  Google Scholar 

  21. Schröder, M., & Kaufman, R. J. (2005). ER stress and the unfolded protein response. Mutation Research-Fundmental and Molecular Mechanisms of Mutagensis, 569, 29–63.

    Article  Google Scholar 

  22. Dorner, A. J., & Kaufman, R. J. (1990). In: V. G. David (ed.), Method enzymol, vol. Volume 185 (pp. 577–596) Academic Press.

  23. Shen, Y., Chung, K. T., & Hendershot, L. M. (2008). In: Protein science encyclopedia, Wiley-VCH Verlag GmbH & Co. KGaA.

  24. Harald, W., Sebastian, K. W., Andreas, B. S., Jochen, R., & Johannes, B. (2006). Substrate transfer from the chaperone Hsp70 to Hsp90. Journal of Molecular Biology, 356, 802–811.

    Article  Google Scholar 

  25. Inan, M., Aryasomayajula, D., Sinha, J., & Meagher, M. M. (2006). Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnology and Bioengineering, 93, 771–778.

    Article  CAS  Google Scholar 

  26. Zhang, L., Chou, C. P., & Moo-Young, M. (2011). Disulfide bond formation and its impact on the biological activity and stability of recombinant therapeutic proteins produced by Escherichia coli expression system. Biotechnology Advances, 29, 923–929.

    Article  CAS  Google Scholar 

  27. Tu, B. P., & Weissman, J. S. (2002). The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Molecular Cell, 10, 983–994.

    Article  CAS  Google Scholar 

  28. Wang, W. Z., Jakob, R. W., & Colin, T. (2007). Erv2p: characterization of the redox behavior of a yeast sulfhydryl oxidase. Biochemistry, 46, 3246–3254.

    Article  CAS  Google Scholar 

  29. Bretthauer, R. K., & Castellino, F. J. (1999). Glycosylation of Pichia pastoris-derived proteins. Biotechnology and Applied Biochemistry, 30, 193–200.

    CAS  Google Scholar 

  30. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M., & Dwek, R. A. (2007). The impact of glycosylation on the biological function and structure of human immunoglobulins. Annual Reviews of Immunology, 25, 21–50.

    Article  CAS  Google Scholar 

  31. Yoshida, H. (2007). ER stress and diseases. The FEBS Journal, 274, 630–658.

    Article  CAS  Google Scholar 

  32. Damasceno, L. M., Anderson, K. A., Ritter, G., Cregg, J. M., Old, L. J., & Batt, C. A. (2007). Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Applied Microbiology and Biotechnology, 74, 381–389.

    Article  CAS  Google Scholar 

  33. Gasser, B., Saloheimo, M., Rinas, U., Dragosits, M., Rodríguez-Carmona, E., Baumann, K., Giuliani, M., Parrilli, E., Branduardi, P., & Lang, C. (2008). Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microbial Cell Factories, 7, 11.

    Article  Google Scholar 

  34. Cereghino, G. P. L., & Cregg, J. M. (1999). Applications of yeast in biotechnology: protein production and genetic analysis. Current Opinion in Biotechnology, 10, 422–427.

    Article  CAS  Google Scholar 

  35. Butz, J. A., Niebauer, R. T., & Robinson, A. S. (2003). Co-expression of molecular chaperones does not improve the heterologous expression of mammalian G-protein coupled receptor expression in yeast. Biotechnology and Bioengineering, 84, 292–304.

    Article  CAS  Google Scholar 

  36. Okuda-Shimizu, Y., & Hendershot, L. M. (2007). Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require herp. Molecular Cell, 28, 544–554.

    Article  CAS  Google Scholar 

  37. Payne, T., Finnis, C., Evans, L. R., Mead, D. J., Avery, S. V., Archer, D. B., & Sleep, D. (2008). Modulation of chaperone gene expression in mutagenized Saccharomyces cerevisiae strains developed for recombinant human albumin production results in increased production of multiple heterologous proteins. Applied and Environmental Microbiology, 74, 7759–7766.

    Article  CAS  Google Scholar 

  38. Xu, P., Raden, D., Doyle Iii, F. J., & Robinson, A. S. (2005). Analysis of unfolded protein response during single-chain antibody expression in Saccaromyces cerevisiae reveals different roles for BiP and PDI in folding. Metabolic Engineering, 7, 269–279.

    Article  CAS  Google Scholar 

  39. Humphreys, D. P., Weir, N., Lawson, A., Mountain, A., & Lund, P. A. (1996). Co-expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab’ fragment expressed in Escherichia coli. FEBS Letters, 380, 194–197.

    Article  Google Scholar 

  40. Mehmet, I., Sarah, A. F., Zhang, W. H. H. P. J., Zhan, B., & Michael, M. M. (2007). Pichia protocols. In J. M. Cregg (Ed.), Methods in molecular biology (389th ed., pp. 65–75). New York: Humana Press.

    Google Scholar 

  41. Li, Z., Moy, A., Gomez, S. R., Franz, A. H., Lin-Cereghino, J., & Lin-Cereghino, G. P. (2010). An improved method for enhanced production and biological activity of human secretory leukocyte protease inhibitor (SLPI) in Pichia pastoris. Biochemical and Biophysical Research Communications, 402, 519–524.

    Article  CAS  Google Scholar 

  42. Vad, R., Nafstad, E., Dahl, L. A., & Gabrielsen, O. S. (2005). Engineering of a Pichia pastoris expression system for secretion of high amounts of intact human parathyroid hormone. Journal of Biotechnology, 116, 251–260.

    Article  CAS  Google Scholar 

  43. Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology, 8, 519–529.

    Article  CAS  Google Scholar 

  44. Damasceno, L., Huang, C., Jr., & Batt, C. (2012). Protein secretion in Pichia pastoris and advances in protein production. Applied Microbiology and Biotechnology, 93, 31–39.

    Article  Google Scholar 

  45. Guerfal, M., Ryckaert, S., Jacobs, P. P., Ameloot, P., Van Craenenbroeck, K., Derycke, R., & Callewaert, N. (2010). The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microbial Cell Factories, 49–61.

  46. Ng, D. T. W., Spear, E. D., & Walter, P. (2000). The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. Journal of Cell Biology, 150, 77–88.

    Article  CAS  Google Scholar 

  47. Graf, A., Gasser, B., Dragosits, M., Sauer, M., Leparc, G., Tuchler, T., Kreil, D., & Mattanovich, D. (2008). Novel insights into the unfolded protein response using Pichia pastoris specific DNA microarrays. BMC Genomics, 9, 390.

    Article  Google Scholar 

  48. Valkonen, M., Penttilä, M., & Saloheimo, M. (2003). Effects of inactivation and constitutive expression of the unfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Applied and Environmental Microbiology, 69, 2065–2072.

    Article  CAS  Google Scholar 

  49. Gasser, B., Maurer, M., Gach, J., Kunert, R., & Mattanovich, D. (2006). Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnology and Bioengineering, 94, 353–361.

    Article  CAS  Google Scholar 

  50. Goochee, C. F., Gramer, M. J., Andersen, D. C., Bahr, J. B., & Rasmussen, J. R. (1991). The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Nature Biotechnology, 9, 1347–1355.

    Article  CAS  Google Scholar 

  51. Valentinis, B., Bhala, A., DeAngelis, T., Baserga, R., & Cohen, P. (1995). The human insulin-like growth factor (IGF) binding protein-3 inhibits the growth of fibroblasts with a targeted disruption of the IGF-I receptor gene. Molecular Endocrinology, 9, 361–367.

    CAS  Google Scholar 

  52. Juge, N., Andersen, J. S., Tull, D., Roepstorff, P., & Svensson, B. (1996). Overexpression, purification, and characterization of recombinant barley α-amylases 1 and 2 secreted by the methylotrophic yeast Pichia pastoris. Protein Expression and Purification, 8, 204–214.

    Article  CAS  Google Scholar 

  53. Heimo, H., Palmu, K., & Suominen, I. (1997). Expression in Pichia pastoris and purification of Aspergillus awamori glucoamylase catalytic domain. Protein Expression and Purification, 10, 70–79.

    Article  CAS  Google Scholar 

  54. Tsujikawa, M., Okabayashi, K., Morita, M., & Tanabe, T. (1996). Secretion of a variant of human single-chain urokinase-type plasminogen activator without an N-glycosylation site in the methylotrophic yeast, Pichia pastoris and characterization of the secreted product. Yeast, 12, 541–553.

    Article  CAS  Google Scholar 

  55. Duman, J. G., Miele, R. G., Liang, H., Grella, D. K., Sim, K. L., Castellino, F. J., & Bretthauer, R. K. (1998). O-Mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnology and Applied Biochemistry, 28, 39–45.

    CAS  Google Scholar 

  56. Gemmill, T. R., & Trimble, R. B. (1999). Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochimica et Biophysica Acta (BBA)-General Subjects, 1426, 227–237.

    Article  CAS  Google Scholar 

  57. Oka, T., & Jigami, Y. (2006). Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. FEBS Journal, 273, 2645–2657.

    Article  CAS  Google Scholar 

  58. Chigira, Y., Oka, T., Okajima, T., & Jigami, Y. (2008). Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology, 18, 303–314.

    Article  CAS  Google Scholar 

  59. Idiris, A., Tohda, H., Kumagai, H., & Takegawa, K. (2010). Engineering of protein secretion in yeast: strategies and impact on protein production. Applied Microbiology and Biotechnology, 86, 403–417.

    Article  CAS  Google Scholar 

  60. Ikeda, Y., Ohashi, T., Tanaka, N., & Takegawa, K. (2009). Identification and characterization of a gene required for α-1, 2-mannose extension in the O-linked glycan synthesis pathway in Schizosaccharomyces pombe. FEMS Yeast Research, 9, 115–125.

    Article  CAS  Google Scholar 

  61. Ohashi, T., & Takegawa, K. (2010). N-and O-linked oligosaccharides completely lack galactose residues in the gms1och1 mutant of Schizosaccharomyces pombe. Applied Microbiology and Biotechnology, 86, 263–272.

    Article  CAS  Google Scholar 

  62. Montesino, R., Garcia, R., Quintero, O., & Cremata, J. A. (1998). Variation in N-Linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris. Protein Expression and Purification, 14, 197–207.

    Article  CAS  Google Scholar 

  63. Trimble, R. B., Atkinson, P. H., Tschopp, J. F., Townsend, R. R., & Maley, F. (1991). Structure of oligosaccharides on Saccharomyces SUC2 invertase secreted by the methylotrophic yeast Pichia pastoris. Journal of Biological Chemistry, 266, 22807–22817.

    CAS  Google Scholar 

  64. Miele, R. G., Castellino, F. J., & Bretthauer, R. K. (1997). Characterization of the acidic oligosaccharides assembled on the Pichia pastoris-expressed recombinant kringle 2 domain of human tissue-type plasminogen activator. Biotechnology and Applied Biochemistry, 26, 79–83.

    CAS  Google Scholar 

  65. Montesino, R., Cremata, J., Rodriguez, M., Besada, V., Falcon, V., & La Fuente, J. (1996). Biochemical characterization of the recombinant Boophilus microplus Bm86 antigen expressed by transformed Pichia pastoris cells. Biotechnology and Applied Biochemistry, 23, 23–28.

    CAS  Google Scholar 

  66. Verostek, M. F., & Trimble, R. B. (1995). Mannosyltransferase activities in membranes from various yeast strains. Glycobiology, 5, 671–681.

    Article  CAS  Google Scholar 

  67. Hamilton, S. R., & Gerngross, T. U. (2007). Glycosylation engineering in yeast: the advent of fully humanized yeast. Current Opinion in Biotechnology, 18, 387–392.

    Article  CAS  Google Scholar 

  68. Chiba, Y., & Akeboshi, H. (2009). Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biological and Pharmaceutical Bulletin, 32, 786–795.

    Article  CAS  Google Scholar 

  69. Chiba, Y., Suzuki, M., Yoshida, S., Yoshida, A., Ikenaga, H., Takeuchi, M., Jigami, Y., & Ichishima, E. (1998). Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. Journal of Biological Chemistry, 273, 26298–26304.

    Article  CAS  Google Scholar 

  70. Nakanishi-Shindo, Y., Nakayama, K. I., Tanaka, A., Toda, Y., & Jigami, Y. (1993). Structure of the N-linked oligosaccharides that show the complete loss of alpha-1, 6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. Journal of Biological Chemistry, 268, 26338–26345.

    CAS  Google Scholar 

  71. Hamilton, S. R., Bobrowicz, P., Bobrowicz, B., Davidson, R. C., Li, H., Mitchell, T., Nett, J. H., Rausch, S., Stadheim, T. A., & Wischnewski, H. (2003). Production of complex human glycoproteins in yeast. Science, 301, 1244–1246.

    Article  CAS  Google Scholar 

  72. Hamilton, S. R., Davidson, R. C., Sethuraman, N., Nett, J. H., Jiang, Y., Rios, S., Bobrowicz, P., Stadheim, T. A., Li, H., & Choi, B. K. (2006). Humanization of yeast to produce complex terminally sialylated glycoproteins. Science, 313, 1441–1443.

    Article  CAS  Google Scholar 

  73. Wentz, A. E., & Shusta, E. V. (2007). A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins. Applied and Environmental Microbiology, 73, 1189–1198.

    Article  CAS  Google Scholar 

  74. Seung Bum, S., Alexandra, B. G., Tae Yong, K., Brigitte, G., Michael, M., Pau, F., Diethard, M., & Sang Yup, L. (2010). Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. Biotechnology Journal, 5, 705–715.

    Article  Google Scholar 

  75. Alexandra, G., Martin, D., Brigitte, G., & Diethard, M. (2009). Yeast systems biotechnology for the production of heterologous proteins. FEMS Yeast Research, 9, 335–348.

    Article  Google Scholar 

  76. Dragosits, M., Stadlmann, J., Albiol, J., Baumann, K., Maurer, M., Gasser, B., Sauer, M., Altmann, F., Ferrer, P., & Mattanovich, D. (2009). The effect of temperature on the proteome of recombinant Pichia pastoris. Journal of Proteome Research, 8, 1380–1392.

    Article  CAS  Google Scholar 

  77. Gasser, B., Maurer, M., Rautio, J., Sauer, M., Bhattacharyya, A., Saloheimo, M., Penttila, M., & Mattanovich, D. (2007). Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genomics, 8, 179.

    Article  Google Scholar 

  78. Stadlmayr, G., Benakovitsch, K., Gasser, B., Mattanovich, D., & Sauer, M. (2010). Genome-scale analysis of library sorting (GALibSo): isolation of secretion enhancing factors for recombinant protein production in Pichia pastoris. Biotechnology and Bioengineering, 105, 543–555.

    Article  CAS  Google Scholar 

  79. Shusta, E. V., Raines, R. T., Plückthun, A., & Wittrup, K. D. (1998). Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nature Biotechnology, 16, 773–777.

    Article  CAS  Google Scholar 

  80. Werten, M. W., & de Wolf, F. A. (2005). Reduced proteolysis of secreted gelatin and Yps1-mediated α-factor leader processing in a Pichia pastoris Kex2 disruptant. Applied and Environmental Microbiology, 71, 2310–2317.

    Article  CAS  Google Scholar 

  81. Gross, E., Kastner, D. B., Kaiser, C. A., & Fass, D. (2004). Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell, 117, 601–610.

    Article  CAS  Google Scholar 

  82. Bonander, N., Darby, R. A., Grgic, L., Bora, N., Wen, J., Brogna, S., Poyner, D. R., O’Neill, M. A., & Bill, R. M. (2009). Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield. Microbial Cell Factories, 8, 10.

    Article  Google Scholar 

  83. Rakestraw, J. A., Baskaran, A. R., & Wittrup, K. D. (2006). A flow cytometric assay for screening improved heterologous protein secretion in yeast. Biotechnology Progress, 22, 1200–1208.

    Article  CAS  Google Scholar 

  84. Bonander, N., Hedfalk, K., Larsson, C., Mostad, P., Chang, C., Gustafsson, L., & Bill, R. M. (2005). Design of improved membrane protein production experiments: quantitation of the host response. Protein Science, 14, 1729–1740.

    Article  CAS  Google Scholar 

  85. Sauer, M., Branduardi, P., Gasser, B., Valli, M., Maurer, M., Porro, D., & Mattanovich, D. (2004). Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation. Microbial Cell Factories, 3, 17.

    Article  Google Scholar 

  86. Giga-Hama, Y., Tohda, H., Takegawa, K., & Kumagai, H. (2007). Schizosaccharomyces pombe minimum genome factory. Biotechnology and Applied Biochemistry, 46, 147–155.

    Article  CAS  Google Scholar 

  87. Takegawa, K., Tokudomi, S., Bhuiyan, M. S. A., Tabuchi, M., Fujita, Y., Iwaki, T., Utsumi, S., & Tanaka, N. (2003). Heterologous expression and characterization of Schizosaccharomyces pombe vacuolar carboxypeptidase Y in Saccharomyces cerevisiae. Current Genetics, 42, 252–259.

    CAS  Google Scholar 

  88. Mukaiyama, H., Giga-Hama, Y., Tohda, H., & Takegawa, K. (2009). Dextran sodium sulfate enhances secretion of recombinant human transferrin in Schizosaccharomyces pombe. Applied Microbiology and Biotechnology, 85, 155–164.

    Article  CAS  Google Scholar 

  89. Kobayashi, K., Kuwae, S., Ohya, T., Ohda, T., Ohyama, M., Ohi, H., Tomomitsu, K., & Ohmura, T. (2000). High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. Journal of Bioscience and Bioengineering, 89, 55–61.

    Article  CAS  Google Scholar 

  90. Yang, Y. F., Yuan, H. Y., Liu, N. S., Chen, X., Gao, B., Lu, H., & Li, Y. (2005). Construction, expression and characterization of human interferon α2b-(G4S) n-thymosin α1 fusion proteins in Pichia pastoris. World Journal of Gastroenterology, 11, 2597–2602.

    CAS  Google Scholar 

  91. Skoko, N., Argamante, B., Grujičić, N. K., Tisminetzky, S. G., Glišin, V., & Ljubijankić, G. (2003). Expression and characterization of human interferon-β1 in the methylotrophic yeast Pichia pastoris. Biotechnology and Applied Biochemistry, 38, 257–265.

    Article  CAS  Google Scholar 

  92. Gao, Z., Bai, G., Chen, J., Zhang, Q., Pan, P., Bai, F., & Geng, P. (2009). Development, characterization, and evaluation of a fusion protein of a novel glucagon-like peptide-1 (GLP-1) analog and human serum albumin in Pichia pastoris. Bioscience, Biotechnology, and Biochemistry, 73, 688–694.

    Article  CAS  Google Scholar 

  93. Hou, J., Yan, R., Yang, L., Wu, Z., Wang, C., Ding, D., Li, N., Ma, C., & Li, M. (2007). High-level expression of fusion protein containing 10 tandem repeated GLP-1 analogs in yeast Pichia pastoris and its biological activity in a diabetic rat model. Bioscience, Biotechnology, and Biochemistry, 71, 1462–1469.

    Article  CAS  Google Scholar 

  94. Macauley-Patrick, S., Fazenda, M. L., McNeil, B., & Harvey, L. M. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast, 22, 249–270.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (No.31171658) for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Zhu, Q., Chen, K. et al. Improving the Secretory Production of the Heterologous Protein in Pichia pastoris by Focusing on Protein Folding. Appl Biochem Biotechnol 175, 535–548 (2015). https://doi.org/10.1007/s12010-014-1292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1292-5

Keywords

Navigation