Skip to main content
Log in

A Novel Affinity Disks for Bovine Serum Albumin Purification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The adsorption characteristics of bovine serum albumin (BSA) onto the supermacroporous poly(hydroxyethylmethacrylate)-Reactive Green 19 [p(HEMA)-RG] cryogel disks have been investigated in this paper. p(HEMA) cryogel disks were prepared by radical polymerization initiated by N,N,N′,N′-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. Reactive Green (RG) 19 was covalently attached to the p(HEMA) cryogel disks. These disks were used in BSA adsorption studies to interrogate the effects of pH, initial protein concentration, ionic strength, and temperature. BSA adsorption capacity of the p(HEMA)-RG cryogel disk was significantly improved after the incorporation of RG. Adsorption capacity reached a plateau value at about 0.8 mg/mL at pH 4.0. The amount of adsorbed BSA decreased from 37.7 to 13.9 mg/g with increasing NaCl concentration. The enthalpy of BSA adsorption onto the p(HEMA)-RG cryogel disk was calculated as −58.4 kJ/mol. The adsorption equilibrium isotherm was fitted well by the Freundlich model. BSA was desorbed from cryogel disks (over 90 %) using 0.5 M NaSCN, and the purity of desorbed BSA was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The experimental results showed that the p(HEMA)-RG cryogel disks have potential for the quick protein separation and purification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Simard, J. R., Zunszain, P. A., Ha, C. E., Yang, J. S., Bhagavan, N. V., Petitpas, I., Curry, S., & Hamilton, J. A. (2005). Proc Natl Acad Sci U S A, 102, 17958.

    Article  CAS  Google Scholar 

  2. Zhang, Y. Z., Zhou, B., Zhang, X. P., Huang, P., Li, C. H., & Liu, Y. (2009). J Hazard Mater, 163, 1345–1352.

    Article  CAS  Google Scholar 

  3. Chuang, V. T., Kragh-Hansen, U., & Otagiri, M. (2002). Pharmaceut Res, 19, 569–77.

    Article  Google Scholar 

  4. Mitzner, S. R., Klammt, S., Peszynski, P., Hickstein, H., Korten, G., Stange, J., & Schmidt, R. (2001). Ther Apher Dial, 5(5), 417–422.

    Article  CAS  Google Scholar 

  5. Martin, L. (2004) IVECCS Proceedings, 274–278.

  6. Yan-Min, L., Yan-Zhao, Y., Xi-Dan, Z., & Chuan-Bo, X. (2010). Food bioprod. Process, 88, 40–46.

    Google Scholar 

  7. Sulkowska, A., Maciazek, M., Rownicka, J., Bojko, B., Pentak, D. A., & Sulkowski, W. W. (2007). J Mol Struc, 834–836, 162–169.

    Article  Google Scholar 

  8. Nevens, J. R., Mallia, A. K., Wendt, M. W., & Smith, P. K. (1992). J Chromatogr, 597, 247–256.

    Article  CAS  Google Scholar 

  9. Yavuz, H., Patir, S., Say, R., Arica, Y., & Denizli, A. (2002). Separ Sci Technol, 37, 2077–2095.

    Article  CAS  Google Scholar 

  10. Deng, Q., German, I., Buchanan, D., & Kennedy, R. T. (2001). Anal Chem, 73, 5415–5421.

    Article  CAS  Google Scholar 

  11. Hidayat, C., Nakajima, M., Takagi, M., & Yoshida, T. (2003). J Biosci Bioeng, 95, 133–138.

    Article  CAS  Google Scholar 

  12. Birch, R. M., O’Byrne, C., Booth, I. R., & Cash, P. (2003). Proteomic, 3, 764–776.

    Article  CAS  Google Scholar 

  13. Wolman, F. J., Graselli, M., & Cascone, O. (2006). Process Biochem, 41, 356–361.

    Article  CAS  Google Scholar 

  14. Glanzel, M., Bultmann, R., Starke, K., & Frahm, A. W. (2003). Eur J Med Chem, 38, 303–312.

    Article  CAS  Google Scholar 

  15. Yavuz, H., & Denizli, A. (2004). Macromol Biosci, 4, 84–91.

    Article  CAS  Google Scholar 

  16. Denizli, A., & Piskin, E. (2001). J Biochem Biophys Methods, 49, 391–416.

    Article  CAS  Google Scholar 

  17. Lozinsky, V. I., Galaev, I. Y., Plieva, F. M., Savina, I. N., Jungvid, H. A., & Mattiasson, B. (2003). Trends Biotechnol, 21, 445–451.

    Article  CAS  Google Scholar 

  18. Lozinsky, V. I., Plieva, F. M., Galaev, Y. I., & Mattiasson, B. (2001). Bioseparation, 10, 163–188.

    Article  CAS  Google Scholar 

  19. Arvidsson, P., Plieva, F. M., Lozinsky, V. I., Galaev, I. Y., & Mattiasson, B. (2003). J Chromatogr A, 986, 275–290.

    Article  CAS  Google Scholar 

  20. Arvidsson, P., Plieva, F. M., Savina, I. N., Lozinsky, V. I., Fexby, S., Bulow, L., Galaev, I. Y., & Mattiasson, B. (2002). J Chromatogr A, 977, 27–38.

    Article  CAS  Google Scholar 

  21. Dainiak, M. B., Galaev, I. Y., & Matiasson, B. (2006). J Chromatogr A, 1123, 145–150.

    Article  CAS  Google Scholar 

  22. Demiryas, N., Tuzmen, N., Galaev, I. Y., Piskin, E., & Denizli, A. (2007). J Appl Polym Sci, 105, 1808–1816.

    Article  CAS  Google Scholar 

  23. Tripathi, A., Kathuria, N., & Kumar, A. (2009). J Biomed Mater Res A, 90A, 680–694.

    Article  CAS  Google Scholar 

  24. Hermanson, G. T., Mallia, A. K., & Smith, P. K. (1992). In Immobilized Affinity Ligand Techniques. California: Academic Pres Inc.

    Google Scholar 

  25. Trivedi, V. D., Saxena, I., Siddiqui, M. U., & Qasim, M. A. (1997). Biochem Mol Biol Int, 43, 1–8.

    CAS  Google Scholar 

  26. Steel, L. F., Shumpert, D., Trotter, M. G., Seeholzer, S. H., Evans, A. A., & London, W. T. (2003). Proteomics, 3, 601–609.

    Article  CAS  Google Scholar 

  27. Han, J., Silcock, P., McQuillan, A. J., & Bremer, P. (2009). Colloids Surf A: Physicochem Eng Aspects, 349, 207–213.

    Article  CAS  Google Scholar 

  28. Li, W., & Li, S. (2007). Colloids Surf A: Physicochem Eng Aspects, 295, 159–164.

    Article  CAS  Google Scholar 

  29. Langmuir, I. (1916). J Am Chem Soc, 38, 2221–2295.

    Article  CAS  Google Scholar 

  30. Freundlich, H. M. F. (1906). J Phys Chem, 57, 385–470.

    CAS  Google Scholar 

  31. Temkin, M. I., & Pyzhev, V. (1940). Acta Physiochim. URSS, 12, 327–356.

    CAS  Google Scholar 

  32. Kopac, T., Bozgeyik, K., & Yener, J. (2008). Colloids Surf A: Physicochem Eng Aspects, 322, 19–28.

    Article  CAS  Google Scholar 

  33. Dubinin, M. M., & Radushkevich, L. V. (1947). Proc Acad Sci USSR Phys Chem Sect, 55, 331–333.

    Google Scholar 

  34. Hobson, J. P. (1969). J Phys Chem, 73, 720–2727.

    Article  Google Scholar 

  35. Smith, J. M. (1981). Chemical Engineering Kinetics. NY: McGraw-Hill.

    Google Scholar 

  36. Wassell, D. T. H., Hall, R. C., & Embery, G. (1995). Biomaterials, 16, 697–702.

    Article  CAS  Google Scholar 

  37. Jung, Y., Kim, S., Park, S. J., & Kim, J. M. (2008). Colloids Surf A: Physicochem Eng Aspects, 313–314, 162–166.

    Article  Google Scholar 

  38. Han, J., Sun, G., Shao, H., Chen, S., & Bao, B. (1999). J Radioanal Nucl Chem, 242, 821–824.

    Article  CAS  Google Scholar 

  39. Han, J., Sun, G., Fang, J., & Bao, B. (1999). J Radioanal Nucl Chem, 241, 215–217.

    Article  CAS  Google Scholar 

  40. Altıntas, E. B., & Denizli, A. (2006). Int J Biol Macromol, 38, 99–106.

    Article  Google Scholar 

  41. Bereli, N., Andaç, M., Baydemir, G., Say, R., Galaev, I. Y., & Denizli, A. (2008). J Chromatogr A, 1190, 18–26.

    Article  CAS  Google Scholar 

  42. Jiang, C., Liu, R., Shen, X., Zhu, L., & Song, F. (2011). Powder Technol, 211, 90–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalan Tuzmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuzmen, N., Kalburcu, T., Uygun, D.A. et al. A Novel Affinity Disks for Bovine Serum Albumin Purification. Appl Biochem Biotechnol 175, 454–468 (2015). https://doi.org/10.1007/s12010-014-1273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1273-8

Keywords

Navigation