Skip to main content
Log in

Recovery of Algal Oil from Marine Green Macro-algae Enteromorpha intestinalis by Acidic–Hydrothermal Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the recovery of algal oil from Enteromorpha intestinalis based on an acidic–hydrothermal reaction was investigated. Overall, the algal oil yield after the acidic–hydrothermal reaction was increased under the conditions of high reaction temperature, high catalyst concentration, and long reaction time within the tested ranges. Significantly, catalyst concentration, compared with reaction temperature and time, less affected algal oil recovery. The optimal acidic–hydrothermal reaction conditions for production of algal oil from E. intestinalis were as follows—200 °C reaction temperature, 2.92 % catalyst concentration, 54 min reaction time. Under these conditions, an 18.6 % algal oil yield was obtained. By increasing the combined severity factor, the algae oil recovery yield linearly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumari, P., Reddy, C. R. K., & Jha, B. (2011). Analytical Biochemistry, 415, 134–144.

    Article  CAS  Google Scholar 

  2. Chandini, S. K., Ganesan, P., Suresh, P. V., & Bhaskar, N. (2008). Journal of Food Science and Technology, 45(1), 1–13.

    Google Scholar 

  3. Jang, J. S., Cho, Y., Jeong, G. T., & Kim, S. K. (2012). Bioprocess and Biosystems Engineering, 35, 11–18.

    Article  CAS  Google Scholar 

  4. Jeong, G. T., & Park, D. H. (2010). Applied Biochemistry and Biotechnology, 161, 41–52.

    Article  CAS  Google Scholar 

  5. Meinita, M. D. N., Hong, Y. K., & Jeong, G. T. (2012). Bioprocess and Biosystems Engineering, 35, 123–128.

    Article  CAS  Google Scholar 

  6. Ra, C. H., Jeong, G. T., Shin, M. K., & Kim, S. K. (2013). Bioresource Technology, 140, 421–425.

    Article  CAS  Google Scholar 

  7. Song, B. B., Kim, S. K., & Jeong, G. T. (2011). KSBB Journal, 26, 347–351.

    Article  Google Scholar 

  8. Lee, S. M., Kim, J. H., Cho, H. Y., Joo, H., & Lee, J. H. (2009). Journal of the Korean Industrial Engineering Chemistry, 20, 517–521.

    CAS  Google Scholar 

  9. Choi, D., Sim, H. S., Piao, Y. L., Ying, W., & Cho, H. (2009). Journal of Industrial and Engineering Chemistry, 15, 12–15.

    Article  CAS  Google Scholar 

  10. Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., & Oh, H. M. (2010). Bioresource Technology, 101, S75–S77.

    Article  CAS  Google Scholar 

  11. Prabakaran, P., & Ravindran, A. D. (2011). Letters in Applied Microbiology, 53, 150–154.

    Article  CAS  Google Scholar 

  12. Gonzalez-Fernandez, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Bioresource Technology, 110, 610–616.

    Article  CAS  Google Scholar 

  13. Suganya, T., & Renganthan, S. (2012). Bioresource Technology, 107, 319–326.

    Article  CAS  Google Scholar 

  14. Amin, S. K., Hawash, S., Diwani, G. E., & Rafe, S. E. (2010). The Journal of the American Science, 6, 293–300.

    Google Scholar 

  15. Kumari, P., Kumar, M., Gupta, V., Reddy, C. R. K., & Jha, B. (2010). Food Chemistry, 120, 749–757.

    Article  CAS  Google Scholar 

  16. Suganya, T., Gandhi, N. N., & Renganthan, S. (2013). Bioresource Technology, 128, 392–400.

    Article  CAS  Google Scholar 

  17. Blomster, J., Back, S., Fewer, D. P., Kiirikki, M., Lehvo, A., Maggs, C. A., & Stanhope, M. J. (2002). American Journal of Botany, 89, 1756–1763.

    Article  Google Scholar 

  18. Brosse, N., Hage, R. E., Sannigrahi, P., & Ragauskas, A. (2010). Cellulose Chemistry and Technology, 44, 71–78.

    CAS  Google Scholar 

  19. Pedersen, M., & Meyer, A. S. (2010). New Biotechnology, 27, 739–750.

    Article  CAS  Google Scholar 

  20. Jeong, G. T., Yang, H. S., & Park, D. H. (2009). Bioresource Technology, 100, 25–30.

    Article  CAS  Google Scholar 

  21. Scordia, D., Cosentino, S. L., & Jeffries, T. W. (2013). Biomass and Bioenergy, 59, 540–548.

    Article  CAS  Google Scholar 

  22. Nitsos, C. K., Matis, K. A., & Triantafyllidis, K. S. (2013). ChemSusChem, 6, 110–122.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2006718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwi-Taek Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, GT., Hong, YK., Lee, HH. et al. Recovery of Algal Oil from Marine Green Macro-algae Enteromorpha intestinalis by Acidic–Hydrothermal Process. Appl Biochem Biotechnol 174, 221–230 (2014). https://doi.org/10.1007/s12010-014-1060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1060-6

Keywords

Navigation