Skip to main content
Log in

Influence of Cell Disruption and Elution on Cellulase Release of Clostridium straminisolvens (CSK1)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Clostridium straminisolvens (CSK1) is a novel cellulolytic bacterium isolated from a cellulose-degrading bacterial community MC1. In this study, the influence of the following cell disruption and elution methods on CSK1cellulase release was investigated: (1) freezing–thawing, (2) ultrasonication, (3) elution, (4) freezing–thawing following elution, (5) ultrasonication following elution, and lastly (6) high-pressure homogenization following elution. The activity of the cellulases CMCase, β-glucosidase, Avicelase, FPase, and xylanase in crude extracts increased 81.5, 23.8, 87.7, 46.3, and 51.7 %, respectively, with an observed optimal treatment method for each cellulase type. The release of protein from CSK1 cells increased following either cell disruption or elution and was highest at 88.3 % in the homogenization high pressure following elution treatment. A newly observed protein was present following cell elution. The performance of cell elution as determined by real time-PCR indicated that the first time cell elution removed more than 90 % of the CSK1 cells from the substrate. These findings demonstrate that cell disruption and elution are effective methods for inducing cellulase release, and elution is the key step for CSK1. To our knowledge, this study presents the first evidence of optimal treatments for induction of cellulase release of Clostridium straminisolvens. This information will be of great value for use in subsequent efforts to better understand the cellulase characteristics of CSK1 and cellulose degradation mechanisms of the MC1 community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stephanopoulos, G. (2007). Science, 315, 801–804.

    Article  CAS  Google Scholar 

  2. Kerr, R. A. (2007). Science, 316, 188–190.

    Article  CAS  Google Scholar 

  3. Jin, W., Yan, F. C., Mao, S. Y., & Zhu, W. Y. (2011). Bioresource Technology, 102, 7925–7931.

    Article  CAS  Google Scholar 

  4. Demain, A. L., Newcomb, M., & Wu, J. H. (2005). Microbiology and Molecular Biology Reviews, 69, 124–154.

    Article  CAS  Google Scholar 

  5. Sizova, M. V., Izquierdo, J. A., Panikov, N. S., & Lee, R. L. (2011). Applied and Environmental Microbiology, 77, 2282–2291.

    Article  CAS  Google Scholar 

  6. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Science, 315, 804–807.

    Article  CAS  Google Scholar 

  7. Lewis, S. M., Montgomery, L., Garleb, K. A., Berger, L. L., & Fahey, G. C., Jr. (1988). Applied and Environmental Microbiology, 54, 1163–1169.

    CAS  Google Scholar 

  8. Feng, Y., Yu, Y., Wang, X., Qu, Y., Li, D., He, W., & Kim, B. H. (2011). Bioresource Technology, 102, 742–747.

    Article  CAS  Google Scholar 

  9. Yang, H., Wu, H., Wang, X., Cui, Z., & Li, Y. (2011). Bioresource Technology, 102, 3546–3550.

    Article  CAS  Google Scholar 

  10. Cui, Z. J., Li, X. M., Piao, Z., Huang, Z., Ishii, M., & Igarashi, Y. (2002). Environmental Science (In Chinese), 23, 36–39.

    CAS  Google Scholar 

  11. Haruta, S., Cui, Z. J., Huang, Z., Li, X. M., Ishii, M., & Igarashi, Y. (2002). Applied Microbiology and Biotechnology, 59, 529–534.

    Article  CAS  Google Scholar 

  12. Guo, P., Zhu, W. B., Wang, H., Lü, Y. C., Wang, X. F., Zheng, D., & Cui, Z. J. (2010). Journal of Microbiology and Biotechnology, 20, 254–264.

    CAS  Google Scholar 

  13. Kato, S., Haruta, S., Cui, Z. J., Ishii, M., Yokota, A., & Igarashi, Y. (2004). International Journal of Systematic and Evolutionary Microbiology, 54, 2043–2047.

    Article  Google Scholar 

  14. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Isak, S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577. table of contents.

    Article  CAS  Google Scholar 

  15. Lamed, R., Setter, E., & Bayer, E. A. (1983). Journal of Bacteriology, 156, 828–836.

    CAS  Google Scholar 

  16. Holdeman, L. V., Cato, E. P., & Moore, W. E. C. (1977). Anaerobe laboratory manual (124th ed.). Blacksburg: Virginia Polytechnic Institute and State University.

    Google Scholar 

  17. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  18. Beukes, N., & Pletschke, B. I. (2006). FEMS Microbiology Letters, 264, 226–231.

    Article  CAS  Google Scholar 

  19. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  20. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual. Vol 3, 3rd edition. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

  21. Zhu, H., Qu, F., & Zhu, L. (1993). Nucleic Acids Research, 21, 5279.

    Article  CAS  Google Scholar 

  22. Kato, S., Haruta, S., Cui, Z. J., Ishii, M., & Igarashi, Y. (2004). FEMS Microbiology Ecology, 51, 133–142.

    Article  CAS  Google Scholar 

  23. Gautam, S., & Simon, L. (2006). Biochemical Engineering Journal, 30, 104–108.

    Article  CAS  Google Scholar 

  24. Bayer, E. A., & Lamed, R. (1986). Journal of Bacteriology, 167, 828–836.

    CAS  Google Scholar 

  25. Yolcubal, I., Pierce, S. A., Maier, R. M., & Brusseau, M. L. (2002). Journal of Environmental Quality, 31, 1824–1830.

    Article  CAS  Google Scholar 

  26. Zheng, H. L., Yin, J. L., Gao, Z., Huang, H., Ji, X. J., & Dou, C. (2011). Applied Biochemistry and Biotechnology, 164, 1215–1224.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 30800672), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.20091010), and the rural biogas technology supporting Project of China (No. 201303080-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofen Wang.

Additional information

Jungang Wang and Jiajia Li contributed to this work equally and are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, J., Liu, J. et al. Influence of Cell Disruption and Elution on Cellulase Release of Clostridium straminisolvens (CSK1). Appl Biochem Biotechnol 173, 510–521 (2014). https://doi.org/10.1007/s12010-014-0857-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0857-7

Keywords

Navigation