Skip to main content
Log in

Regional Differences in Rice Hulls Supply for Bioethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Agricultural by-products are becoming an attractive substrate for bioethanol production. The aim of this study was to evaluate the effects of regional differences in the rice hulls using Escherichia coli KO11 for bioethanol production. The rice hulls coded Edirne were obtained from Thrace Region, and the rice hulls coded Izmir were obtained from Aegean Region in Turkey. Rice hulls were treated by dilute acid before using them as substrates. The cells were incubated on an orbital shaker at 160 rpm under 30 °C during 96 h of the fermentation period. It was found that the maximum yield of ethanol from sugar (0.44 g ethanol/g reducing sugar) was obtained with the substrate C/N ratio of 29.16 in Izmir medium. The main difference was the dominant carbon source available as a substrate. It was detected that glucose concentration was about 2.5 times higher in Izmir medium, whereas xylose concentration was about two times higher in Edirne medium. The different results obtained with rice hulls from different origins could depend on the type of paddy as well as different cultivation conditions. These findings provide a valuable indicator for identifying suitable agricultural waste materials to be used as substrates for bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2,3-BD:

2,3-Butanediol

DT:

Doubling time, in hour

EtOH:

Ethanol concentration, in gram per liter

HAc:

Acetic acid

HCap:

Caprionate

Hepta:

Heptanoic acid

HFor:

Formic acid

HLac:

Lactic acid

HPr:

Propionate

HSuc:

Succinic acid

IsoBut:

Isobutyrate

IsoVal:

Isovalate

LB:

Luria–Bertani medium

Q EtOH :

Volumetric productivity, in gram EtOH per liter per hour

X :

Biomass concentration, in gram per liter

VFAs:

Volatile fatty acids, in gram per liter

Y AB :

Yield of A from B, in gram per gram

μ :

Specific growth rate, in hour

References

  1. Wang, M. Q., Han, J., Haq, Z., Tyner, W. E., Wu, M., & Elgowainy, A. (2011). Biomass and Bioenergy, 35(5), 1885–1896.

    Article  CAS  Google Scholar 

  2. Andrade, R. R., Filho, F. M., Filho, R. M., & Costa, A. C. (2013). Bioresource Technology, 130, 351–359.

    Article  Google Scholar 

  3. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Renewable Energy, 37(1), 19–27.

    Article  CAS  Google Scholar 

  4. Lim, J. S., Manan, Z. A., Wan Alwi, S. R., & Hashim, H. (2012). Renewable and Sustainable Energy Reviews, 16, 3084–3094.

    Article  CAS  Google Scholar 

  5. Bakker, A. (2012). Fifth International symposium on mixing in industrial processes. Spain: Seville.

    Google Scholar 

  6. Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Lidén, G., & Zacchi, G. (2006). Trends in Biotechnology, 24(12), 549–556.

    Article  Google Scholar 

  7. Tsigie, Y. A., Wu, C. H., Huynh, L. H., Ismadji, S., & Ju, Y. H. (2012). Bioresource Technology. doi:10.1016/j.biortech.2012.11.091.

    Google Scholar 

  8. Conde-Mejía, C., Jiménez-Gutiérrez, A., & El-Halwagi, M. (2012). Process Safety and Environment, 90(3), 189–202.

    Article  Google Scholar 

  9. Tucker, M. P., Kim, K. H., Newman, M. M., & Nguyen, Q. A. (2003). Applied Biochemistry and Biotechnology, 105, 165–177.

    Article  Google Scholar 

  10. Matano, Y., Hasunuma, T., & Kondo, A. (2012). Bioresource Technology, 108, 128–133.

    Article  CAS  Google Scholar 

  11. Rabelo, S. C., Filho, R. M., & Costa, A. C. (2009). Applied Biochemistry and Biotechnology, 153, 139–150.

    Article  CAS  Google Scholar 

  12. Harun, R., & Danquaha, M. K. (2011). Process Biochemistry, 46, 304–309.

    Article  CAS  Google Scholar 

  13. Moniruzzaman, M., & Ingram, L. O. (1998). Biotechnology Letters, 20(10), 943–947.

    Article  CAS  Google Scholar 

  14. Moniruzamman, M., Lai, X., York, S. W., & Ingram, L. O. (1997). Applied and Environmental Microbiology, 63(12), 4633–4637.

    Google Scholar 

  15. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  16. Miller, G. L. (1959). Analytical Chemistry, 31, 426.

    Article  CAS  Google Scholar 

  17. Azbar, N., Tutuk, F., & Keskin, T. (2009). Biotechnology and Bioprocess Engineering, 14, 99–104.

    Article  CAS  Google Scholar 

  18. Gungormusler, M., Gonen, C., & Azbar, N. (2011). Bioprocess and Biosystems Engineering, 34(6), 727–733.

    Article  CAS  Google Scholar 

  19. ASTM D-5291-96 (1996). Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in petroleum products and lubricants. West Conshohocken.

  20. Ndegwa, P. M., & Thompson, S. A. (2000). Bioresource Technology, 75, 7–12.

    Article  CAS  Google Scholar 

  21. Serttas, S. (2012). Turkey grain and feed annual 2012. Ankara.

  22. Sarigedik, U. (2005). Turkey grain and feed update 2005. Ankara.

  23. Rice Millers Association (PDD) (2013). The differences of Baldo and Osmancik paddies. http://www.pdd.org.tr/osmancik-ve-baldo-pirinc. Accessed 22 Mar 2013.

  24. Fengel, D., & Wegener, G. (1984). Wood-chemistry, ultrastructure, reactions (2nd ed.). Berlin: Walter de Gruyter.

    Google Scholar 

  25. Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Bioresource Technology, 101, 4744–4753.

    Article  CAS  Google Scholar 

  26. Olsson, L., & Hahn-Hägerdal, B. (1996). Enzyme and Microbial Technology, 18, 312–331.

    Article  CAS  Google Scholar 

  27. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  28. Dagninoa, E. P., Chamorro, E. R., Romano, S. D., Felissia, F. E., & Area, M. C. (2013). Industrial Crops Production, 42, 363–368.

    Article  Google Scholar 

  29. Larsson, S., Cassland, P., & Jönsson, L. J. (2001). Applied and Environmental Microbiology, 67, 1163–1170.

    Article  CAS  Google Scholar 

  30. Hasunuma, T., Sanda, T., Yamada, R., Yoshimura, K., Ishii, J., & Kondo, A. (2011). Microbial Cell Factories, 10, 2.

    Article  CAS  Google Scholar 

  31. Almeida, J. R. M., Modig, T., Petersson, A., Hahn-Hägerdal, B., Liden, G., & Gorwa-Grauslund, M. F. (2007). Journal of Chemical Technology and Biotechnology, 82, 340–349.

    Article  CAS  Google Scholar 

  32. Fujitomi, K., Sanda, T., Hasunuma, T., & Kondo, A. (2012). Bioresource Technology, 111, 161–166.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was a part of the COST Action FP0602, and the authors wish to thank The Scientific and Technical Research Council of Turkey (Tubitak) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Imamoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imamoglu, E., Dalay, M.C. & Sukan, F.V. Regional Differences in Rice Hulls Supply for Bioethanol Production. Appl Biochem Biotechnol 171, 2065–2074 (2013). https://doi.org/10.1007/s12010-013-0504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0504-8

Keywords

Navigation