Skip to main content
Log in

Genome Mining for New α-Amylase and Glucoamylase Encoding Sequences and High Level Expression of a Glucoamylase from Talaromyces stipitatus for Potential Raw Starch Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mining fungal genomes for glucoamylase and α-amylase encoding sequences led to the selection of 23 candidates, two of which (designated TSgam-2 and NFamy-2) were advanced to testing for cooked or raw starch hydrolysis. TSgam-2 is a 66-kDa glucoamylase recombinantly produced in Pichia pastoris and originally derived for Talaromyces stipitatus. When harvested in a 20-L bioreactor at high cell density (OD600 > 200), the secreted TSgam-2 enzyme activity from P. pastoris strain GS115 reached 800 U/mL. In a 6-L working volume of a 10-L fermentation, the TSgam-2 protein yield was estimated to be ∼8 g with a specific activity of 360 U/mg. In contrast, the highest activity of NFamy-2, a 70-kDa α-amylase originally derived from Neosartorya fischeri, and expressed in P. pastoris KM71 only reached 8 U/mL. Both proteins were purified and characterized in terms of pH and temperature optima, kinetic parameters, and thermostability. TSgam-2 was more thermostable than NFamy-2 with a respective half-life (t1/2) of >300 min at 55 °C and >200 min at 40 °C. The kinetic parameters for raw starch adsorption of TSgam-2 and NFamy-2 were also determined. A combination of NFamy-2 and TSgam-2 hydrolyzed cooked potato and triticale starch into glucose with yields, 71–87 %, that are competitive with commercially available α-amylases. In the hydrolysis of raw starch, the best hydrolysis condition was seen with a sequential addition of 40 U of a thermostable Bacillus globigii amylase (BgAmy)/g starch at 80 °C for 16 h, and 40 U TSgam-2/g starch at 45 °C for 24 h. The glucose released was 8.7 g/10 g of triticale starch and 7.9 g/10 g of potato starch, representing 95 and 86 % of starch degradation rate, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zeeman, S. C., Kossmann, J., & Smith, A. M. (2010). Annual Review of Plant Biology, 61, 209–234.

    Article  CAS  Google Scholar 

  2. Grull, D. R., Jetzinger F., Kozich M., Wastyn M. M., & Wittenberger R. (2008). Biorefineriesindustrial processes and products: status quo and future directions. In B. Kamm, P. R. Gruber, M. Kamm (Eds.), (pp 61–95). Weinheim: Wiley-CH Berlag GmbH & Co. KGaA.

  3. Robertson, G. H., Wong, D. W., Lee, C. C., Wagschal, K., Smith, M. R., & Orts, W. J. (2006). Journal of Agricultural and Food Chemistry, 54, 353–365.

    Article  CAS  Google Scholar 

  4. Shigechi, H., Fujita, Y., Koh, J., Ueda, M., Fukuda, H., & Kondo, A. (2004). Biochemical Engineering Journal, 18, 149–153.

    Article  CAS  Google Scholar 

  5. Ueda, S., Zenin, C. T., Monteiro, D. A., & Park, Y. K. (1981). Biotechnology and Bioengineering, 23, 291–299.

    Article  CAS  Google Scholar 

  6. Hariantono, J., Yokota, A., Shoichi, T., & Tomita, F. (1991). Journal of Fermentation and Bioengineering, 71, 367–369.

    Article  CAS  Google Scholar 

  7. Sun, H., Zhao, P., & Peng, M. (2008). World Journal of Microbiology and Biotechnology, 24, 2613–2618.

    Article  CAS  Google Scholar 

  8. Al-Turki, A. I., Khattab, A. A., & Ihab, A. M. (2008). Biotechnology, 7, 456–462.

    Article  CAS  Google Scholar 

  9. Kumar, S., Kumar, P., & Satyanarayana, T. (2007). Applied Biochemistry and Biotechnology, 142, 221–230.

    Article  CAS  Google Scholar 

  10. Pedersen, H., Beyer, M., & Nielsen, J. (2000). Applied Microbiology and Biotechnology, 53, 272–277.

    Article  CAS  Google Scholar 

  11. Joutsjoki, V. V., Torkkeli, T. K., & Helena Nevalainen, K. M. (1993). Current Genetics, 24, 223–228.

    Article  CAS  Google Scholar 

  12. Liu, S. H., Chou, W. I., Sheu, C. C., & Chang, M. D.-T. (2005). Biochemical and Biophysical Research Communications, 326(4), 817–824.

    Article  CAS  Google Scholar 

  13. Fierobe, H. P., Mirgorodskaya, E., Frandsen, T. P., Roepstorff, P., & Svensson, B. (1997). Protein Expression and Purification, 9, 159–170.

    Article  CAS  Google Scholar 

  14. Chen, J., Zhang, Y., Zhao, C., Li, A., Zhou, Q., & Li, D. (2007). Journal of Applied Microbiology, 103, 2277–2284.

    Article  CAS  Google Scholar 

  15. Thorsen, T.S., Johnsen A.H., Josefsen K., & Jensen B. (2006). Biochimica et Biophysica Acta (BBA)—Proteins & Proteomics, 1764, 671–676.

  16. Xiao, Z., Boyd, J., Grosse, S., Beauchemin, M., Coupe, E., & Lau, P. C. K. (2008). Applied Microbiology and Biotechnology, 78, 973–981.

    Article  CAS  Google Scholar 

  17. Grosse, S., Bergeron H., Imura A., Boyd J., Wang S., Kubota K. et al. (2010). Microbial Biotechnology, 3, 65–73.

  18. Winter, R. T., Heuts D. P., Rijpkema E. M., van Bloois E., Wijma H. J., & Fraaije M. W. (2012). Applied Microbiology and Biotechnology, 95, 389–403.

    Google Scholar 

  19. Sambrook, J. E. F. F., Fritsch E. F., & Maniatis T. (1989). Molecular cloning: a laboratory manual. NY: Cold Spring Harbor Laboratory.

  20. Smith, S. P., Barber, K. R., Dunn, S. D., & Shaw, G. S. (1996). Biochemistry, 35, 8805–8814.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Xiao, Z., Storms, R., & Tsang, A. (2005). Analytical Biochemistry, 342, 176–178.

    Article  CAS  Google Scholar 

  23. Rodríguez-Sanoja, R., Oviedo, N., & Sánchez, S. (2005). Current Opinion in Microbiology, 8, 260–267.

    Article  Google Scholar 

  24. Presecki, A. V., Blazevic Z. F., & Vasic-Racki, D. (2013). Bioprocess and Biosystems Engineering. doi:10.1007/s00449-013-0926-2.

  25. Sun, H., Zhao, P., Ge, X., Xia, Y., Hao, Z., Liu, J., et al. (2010). Applied Biochemistry and Biotechnology, 160, 988–1003.

    Article  CAS  Google Scholar 

  26. Salman, H., Blazek, J., Lopez-Rubio, A., Gilbert, E. P., Hanley, T., & Copeland, L. (2009). Carbohydrates Polymers, 75, 420–427.

    Article  CAS  Google Scholar 

  27. Tawil, G., Vikso-Nielsen, A., Rolland-Sabate, A., Colonna, P., & Buleon, A. (2011). Biomacromolecules, 12, 34–42.

    Article  CAS  Google Scholar 

  28. Van Zyl, W. H., Bloom, M., & Viktor, M. J. (2012). Applied Microbiology and Biotechnology, 95, 1377–1388.

    Article  CAS  Google Scholar 

  29. Naguleswaran, S., Li, J., Vasanthan, T., Bressler, D., & Hoover, R. (2012). Carbohydrates Polymers, 88, 864–874.

    Article  CAS  Google Scholar 

  30. Marin-Navarro, J., & Polaina, J. (2011). Applied Microbiology and Biotechnology, 89, 1267–1273.

    Article  CAS  Google Scholar 

  31. Chen, W., Xie, T., Shao, Y., & Chen, F. (2012). PLOS one, 7, e49679.

    Article  CAS  Google Scholar 

  32. Kim, H. R., Im, Y. K., Ko, H. M., Chin, J. E., Kim, I. C., Lee, H. B., et al. (2011). Biotechnology Letters, 33, 1643–1648.

    Article  CAS  Google Scholar 

  33. Morita, H., & Fujio, Y. (1997). Starch, 49, 293–296.

    Article  CAS  Google Scholar 

  34. Pavezzi, F.C., Carneiro A.i.A.J., Bocchini-Martins D.A., Alves-Prado H.F., Ferreira H., Martins P.M. et al. (2011). Applied Biochemistry and Biotechnology, 163, 14–24.

    Google Scholar 

  35. Kaur, P., & Satyanarayana, T. (2004). World Journal of Microbiology and Biotechnology, 20, 419–425.

    Article  CAS  Google Scholar 

  36. Heimo, H., Palmu, K., & Suominen, I. (1997). Protein Expression and Purification, 10, 70.

    Article  CAS  Google Scholar 

  37. Shoji, H., Sugimoto, T., Hosoi, K., Shibata, K., Tanabe, M., & Kawatsura, K. (2007). Journal of Bioscience and Bioengineering, 103, 203–205.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding through the Canadian Triticale Biorefinery Initiative (CTBI) of the Agricultural Bioproducts Innovation Program of Agriculture and Agri-Food Canada (AAFC) and the National Bioproducts Program (NBP) of NRCC-AFCC-NRCan. Special thanks go to Francois Eudes and Connie Phillips for their encouragement and support. We thank Stephane Deschamp for his expert help in analytical analyses. This work is dedicated to the memory of Mo (Hamid Mohamed), a visionary and driving force behind the creation of the Canadian Biomass Innovation Network (CBIN) of which P.C.K. Lau is most grateful to have served.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. K. Lau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1808 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Z., Wu, M., Grosse, S. et al. Genome Mining for New α-Amylase and Glucoamylase Encoding Sequences and High Level Expression of a Glucoamylase from Talaromyces stipitatus for Potential Raw Starch Hydrolysis. Appl Biochem Biotechnol 172, 73–86 (2014). https://doi.org/10.1007/s12010-013-0460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0460-3

Keywords

Navigation