Skip to main content
Log in

Refolding of Laccase in Dilution Additive Mode with Copper-Based Ionic Liquid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are molten salts which do not crystallize at room temperature. Tunable physicochemical properties of ILs including hydrophobicity and polarity facilitate their applications in many biological processes. In this study, a copper-based IL was employed in order to enhance the refolding efficiency of laccase from Trametes versicolor which requires copper as a cofactor. When 1-ethyl-3-methylimidazolium trichlorocuprate ([EMIM][CuCl3]) was added to refolding buffer instead of urea, the laccase refolding yield was improved more than 2.7 times compared to the conventional refolding buffer which contains urea. When the refolding of laccase was carried out at different temperatures (4, 25, and 37 °C), the highest refolding yield was obtained at 25 °C. At low temperature, two conflicting effects, i.e., suppression of the aggregate formation and decrease of folding rate, influence the protein refolding. In contrast, a copper-based IL did not enhance the refolding of lysozyme, a non-copper-containing protein. From these results, we can conclude that this copper-based IL, [EMIM][CuCl3], was exclusively effective on the refolding process of a copper-containing protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheng, Y. S., Kwoh, D. Y., Kwoh, T. J., Soltvedt, B. C., & Zipser, D. (1981). Stabilization of a degradable protein by its overexpression in Escherichia coli. Gene, 14, 121–130.

    Article  CAS  Google Scholar 

  2. Santoro, M. M., & Bolen, D. W. (1988). Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry, 27, 8063–8068.

    Article  CAS  Google Scholar 

  3. Rudolph, R., & Lilie, H. (1996). In vitro folding of inclusion body proteins. FASEB Journal, 10, 49–56.

    CAS  Google Scholar 

  4. Chaudhuri, J. B. (1994). Refolding recombinant proteins: process strategies and novel approaches. Annals of the New York Academy of Sciences, 721, 374–385.

    Article  CAS  Google Scholar 

  5. Hwang, S. M., Kang, H. J., Bae, S. W., Chang, W. J., & Koo, Y. M. (2010). Refolding of lysozyme in hydrophobic interaction chromatography: effects of hydrophobicity of adsorbent and salt concentration in mobile phase. Biotechnology and Bioprocess Engineering, 15, 213–219.

    Article  CAS  Google Scholar 

  6. Lange, C., & Rudolph, R. (2008). Production of recombinant proteins for therapy, diagnostics, and industrial research by in vitro folding. In J. Buchner & T. Kiefhaber (Eds.), Protein folding handbook (pp. 1245–1280). Weinheim: Wiley.

    Google Scholar 

  7. Wetlaufer, D. B., Branca, P. A., & Chen, G. X. (1987). The oxidative folding of proteins by disulfide plus thiol does not correlate with redox potential. Protein Engineering, 1, 141–146.

    Article  CAS  Google Scholar 

  8. Clark, E. D. (2001). Protein refolding for industrial processes. Current Opinion in Biotechnology, 12, 202–207.

    Article  CAS  Google Scholar 

  9. Badcoe, I. G., Smith, C. J., Wood, S., Halsall, D. J., Holbrook, J. J., Lund, P., & Clarke, A. R. (1991). Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. Biochemistry, 30, 9195–9200.

    Article  CAS  Google Scholar 

  10. Bam, N. B., Cleland, J. L., & Randolph, T. W. (1996). Molten globule intermediate of recombinant human growth hormone: stabilization with surfactants. Biotechnology Progress, 12, 801–809.

    Article  CAS  Google Scholar 

  11. Ha, S. H., Mai, N. L., & Koo, Y. M. (2010). Microwave-assisted separation of ionic liquids from aqueous solution of ionic liquids. Journal of Chromatography. A, 1217, 7638–7641.

    Article  CAS  Google Scholar 

  12. van Rantwijk, F., Madeira Lau, R., & Sheldon, R. A. (2003). Biocatalytic transformations in ionic liquids. Trends in Biotechnology, 21, 131–138.

    Article  Google Scholar 

  13. Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., & Rogers, R. D. (2001). Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 3, 156–164.

    Article  CAS  Google Scholar 

  14. Anderson, J. L., Ding, J., Welton, T., & Armstrong, D. W. (2002). Characterizing ionic liquids on the basis of multiple solvation interactions. Journal of the American Chemical Society, 124, 14247–14254.

    Article  CAS  Google Scholar 

  15. Parvulescu, V. I., & Hardacre, C. (2007). Catalysis in ionic liquids. Chemistry Review, 107, 2615–2665.

    Article  CAS  Google Scholar 

  16. Ha, S. H., Menchavez, R. N., & Koo, Y. M. (2010). Reprocessing of spent nuclear waste using ionic liquids. Korean Journal of Chemical Engineering, 27, 1360–1365.

    Article  CAS  Google Scholar 

  17. Ha, S. H., Ngoc, L. M., An, G. M., & Koo, Y. M. (2011). Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresource Technology, 102, 1214–1219.

    Article  CAS  Google Scholar 

  18. Zhao, H. (2006). Innovative applications of ionic liquids as “green” engineering liquids. Chemical Engineering Communications, 193, 1660–1677.

    Article  CAS  Google Scholar 

  19. Summers, C. A., & Flowers, R. A. (2000). Protein renaturation by the liquid organic salt ethylammonium nitrate. Protein Science, 9, 2001–2008.

    Article  CAS  Google Scholar 

  20. Lange, C., Patil, G., & Rudolph, R. (2005). Ionic liquids as refolding additives: N′-alkyl and N′-(omega-hydroxyalkyl) N-methylimidazolium chlorides. Protein Science, 14, 2693–2701.

    Article  CAS  Google Scholar 

  21. Salony, G. N., Baranwal, R., Chhabra, M., Mishra, S., Chaudhuri, T. K., & Bisaria, V. S. (2008). Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli. Biochimica et Biophysica Acta, 1784, 259–268.

    Article  CAS  Google Scholar 

  22. Guo, M., Lu, F. P., Du, L. X., Pu, J., & Bai, D. Q. (2006). Optimization of the expression of a laccase gene from Trametes versicolor in Pichia methanolica. Applied Microbiology and Biotechnology, 71, 848–852.

    Article  CAS  Google Scholar 

  23. Shugar, D. (1952). The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochimica et Biophysica Acta, 8, 302–309.

    Article  CAS  Google Scholar 

  24. Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C., & Mougin, C. (2002). Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry, 41, 7325–7333.

    Article  CAS  Google Scholar 

  25. Alcalde, M. (2007). Laccases: biological functions, molecular structure and industrial applications. In J. Polaina & A. MacCabe (Eds.), Industrial enzymes (pp. 461–476). Dordrecht: Springer.

    Chapter  Google Scholar 

  26. Irshad, M., Asgher, M., Sheikh, M. A., & Nawaz, H. (2011). Purification and characterization of laccase produced by Schyzophylum commune IBL-06 in solid state culture of banana stalks. Bioresources, 6, 2861–2873.

    CAS  Google Scholar 

  27. Johannes, C., & Majcherczyk, A. (2000). Laccase activity tests and laccase inhibitors. Journal of Biotechnology, 78, 193–199.

    Article  CAS  Google Scholar 

  28. Clark, E. D. B. (1998). Refolding of recombinant proteins. Current Opinion in Biotechnology, 9, 157–163.

    Article  Google Scholar 

  29. Attri, P., & Venkatesu, P. (2012). Influence of protic ionic liquids on the structure and stability of succinylated Con A. International Journal of Biological Macromolecules, 51, 119–128.

    Article  CAS  Google Scholar 

  30. Buchfink, R., Tischer, A., Patil, G., Rudolph, R., & Lange, C. (2010). Ionic liquids as refolding additives: variation of the anion. Journal of Biotechnology, 150, 64–72.

    Article  CAS  Google Scholar 

  31. Yang, Z. (2009). Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. Journal of Biotechnology, 144, 12–22.

    Article  CAS  Google Scholar 

  32. Zhao, H. (2005). Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 37, 16–25.

    Article  CAS  Google Scholar 

  33. Zhao, H. (2006). Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids. Journal of Chemical Technology and Biotechnology, 81, 877–891.

    Article  CAS  Google Scholar 

  34. Wildegger, G., & Kiefhaber, T. (1997). Three-state model for lysozyme folding: triangular folding mechanism with an energetically trapped intermediate. Journal of Molecular Biology, 270, 294–304.

    Article  CAS  Google Scholar 

  35. Mizuguchi, M., Arai, M., Ke, Y., Nitta, K., & Kuwajima, K. (1998). Equilibrium and kinetics of the folding of equine lysozyme studied by circular dichroism spectroscopy. Journal of Molecular Biology, 283, 265–277.

    Article  CAS  Google Scholar 

  36. Bae, S. W., Chang, W. J., Koo, Y. M., & Ha, S. H. (2012). Enhanced refolding of lysozyme with imidazolium-based room temperature ionic liquids: effect of hydrophobicity and sulfur residue. Science China: Chemistry, 55, 1657–1662.

    Article  CAS  Google Scholar 

  37. Guez, V., Roux, P., Navon, A., & Goldberg, M. E. (2002). Role of individual disulfide bonds in hen lysozyme early folding steps. Protein Science, 11, 1136–1151.

    Article  CAS  Google Scholar 

  38. Kawamura, S., Ohkuma, M., Chijiiwa, Y., Kohno, D., Nakagawa, H., Hirakawa, H., Kuhara, S., & Torikata, T. (2008). Role of disulfide bonds in goose-type lysozyme. FEBS Journal, 275, 2818–2830.

    Article  CAS  Google Scholar 

  39. West, S. M., Chaudhuri, J. B., & Howell, J. A. (1998). Improved protein refolding using hollow-fibre membrane dialysis. Biotechnology and Bioengineering, 57, 590–599.

    Article  CAS  Google Scholar 

  40. Yoshii, H., Furuta, T., Yonehara, T., Ito, D., Linko, Y. Y., & Linko, P. (2000). Refolding of denatured/reduced lysozyme at high concentration with diafiltration. Bioscience, Biotechnology, and Biochemistry, 64, 1159–1165.

    Article  CAS  Google Scholar 

  41. Foguel, D., Robinson, C. R., de Sousa, P. C., Silva, J. L., & Robinson, A. S. (1999). Hydrostatic pressure rescues native protein from aggregates. Biotechnology and Bioengineering, 63, 552–558.

    Article  CAS  Google Scholar 

  42. St John, R. J., Carpenter, J. F., & Randolph, T. W. (1999). High pressure fosters protein refolding from aggregates at high concentrations. Proceedings of the National Academy of Sciences of the United States of America, 96, 13029–13033.

    Article  Google Scholar 

  43. St John, R. J., Carpenter, J. F., Balny, C., & Randolph, T. W. (2001). High pressure refolding of recombinant human growth hormone from insoluble aggregates—structural transformations, kinetic barriers, and energetics. Journal of Biological Chemistry, 276, 46856–46863.

    Article  CAS  Google Scholar 

  44. Vallejo, L. F., & Rinas, U. (2004). Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration. Biotechnology and Bioengineering, 85, 601–609.

    Article  CAS  Google Scholar 

  45. Buchner, J., Pastan, I., & Brinkmann, U. (1992). A method for increasing the yield of properly folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Analytical Biochemistry, 205, 263–270.

    Article  CAS  Google Scholar 

  46. Kurniawati, S., & Nicell, J. A. (2008). Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresource Technology, 99, 7825–7834.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant number 2010-0013308).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoon-Mo Koo or Sung Ho Ha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, SW., Ahn, K., Koo, YM. et al. Refolding of Laccase in Dilution Additive Mode with Copper-Based Ionic Liquid. Appl Biochem Biotechnol 171, 1289–1298 (2013). https://doi.org/10.1007/s12010-013-0422-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0422-9

Keywords

Navigation