Skip to main content
Log in

Identification of Druggable Targets for Acinetobacter baumannii Via Subtractive Genomics and Plausible Inhibitors for MurA and MurB

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Emergence of the multidrug-resistant pathogens has rendered the current therapies ineffective thereby, resulting in the need for new drugs and drug targets. The accumulating protein sequence data has initiated a drift from classical drug discovery protocols to structure-based drug designing. In the present study, in silico subtractive genomics approach was implemented to find a set of potential drug targets present in an opportunist bacterial pathogen, Acinetobacter baumannii (A. baumannii). Out of the 43 targets identified, further studies for protein model building and lead-inhibitor identification were carried out on two cell-essential targets, MurA and MurB enzymes (of A. baumannii designated as MurAAb and MurBAb) involved in the peptidoglycan biosynthesis pathway of bacteria. The homology model built for each of them was further refined and validated using various available programs like PROCHECK, Errat, ProSA energy plots, etc. Compounds showing activity against MurA and MurB enzymes of other organisms were collected from the literature and were docked into the active site of MurAAb and MurBAb enzymes. Three inhibitors namely, T6361, carbidopa, and aesculin, showed maximum Glide score, hydrogen bonding interactions with the key amino acid residues of both the enzymes and acceptable ADME properties. Furthermore, molecular dynamics simulation studies on MurAAb–T6361 and MurBAb–T6361 complexes suggested that the ligand has a high binding affinity with both the enzymes and the hydrogen bonding with the key residues were stable in the dynamic condition also. Therefore, these ligands have been propsed as dual inhibitors and promising lead compounds for the drug design against MurAAb and MurBAb enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Leepethacharat, K., & Oberdorfer, P. (2007). Journal Infectious Diseases Antimicrobial Agents, 24, 63–73.

    Google Scholar 

  2. Berezin, E. B. (1997). Expert Opinion Investigational Drugs, 6(2), 119–127.

    Article  Google Scholar 

  3. Karageorgopoulos, D. E., & Falagas, M. E. (2008). Lancet, 8, 751–762.

    Google Scholar 

  4. Manchanda, V., et al. (2010). Jounal Global Infectious Disease, 2, 291–302.

    Article  Google Scholar 

  5. Erridge, C., et al. (2007). Journal of Medical Microbiology, 56, 165–171.

    Article  CAS  Google Scholar 

  6. Rahbar, M. R., et al. (2010). Journal of Theoretical Biology, 266, 275–290.

    Article  CAS  Google Scholar 

  7. Perez, F. (2011). Virulence, 2(2), 86–90.

    Article  Google Scholar 

  8. Lee, J. S., et al. (2007). Biochemical Pharmacology, 74, 86–97.

    Article  CAS  Google Scholar 

  9. Vetrivel, U. (2011). The HUGO Journal, 5, 25–34.

    Article  Google Scholar 

  10. Barh, D. (2011). Drug Development Research, 72, 162–177.

    Article  CAS  Google Scholar 

  11. Schmid, M. B., et al. (2006). Biochemical Pharmacology, 71, 1048–1056.

    Article  CAS  Google Scholar 

  12. Salemme, F. R. (1997). Structure, 5, 319–324.

    Article  CAS  Google Scholar 

  13. Huynen, M. (1997). Trends in Genetics, 13, 389–390.

    Article  CAS  Google Scholar 

  14. Huynen, M., et al. (1998). FEBS Letters, 426(1), 1–5.

    Article  CAS  Google Scholar 

  15. Hillisch, A., et al. (2004). Drug Discovery Today, 9, 659–669.

    Article  CAS  Google Scholar 

  16. Weiderstien, M., et al. (2007). Nucleic Acid Research, 36, 407–410.

    Article  Google Scholar 

  17. Radha Kishan, K. V., et al. (2007). Current Protein & Peptide Science, 8, 376–380.

    Article  Google Scholar 

  18. Kitchen, D. B., et al. (2004). Nature Reviews Drug Discovery, 3, 939–945.

    Article  Google Scholar 

  19. Georrge, J. J., et al. (2012). Applied Biochemistry and Biotechnology, 167(5), 1377–1395.

    Article  CAS  Google Scholar 

  20. Tondi, D., et al. (1999). Chemistry and Biology, 6, 319–331.

    Article  CAS  Google Scholar 

  21. Fritz, T., et al. (2001). Chemistry and Biology, 8, 981–995.

    Article  CAS  Google Scholar 

  22. Garg, A., et al. (2010). BMC Bioinformatics, 11(1), S53.

    Article  Google Scholar 

  23. Garg, A., et al. (2010). BMC Bioinformatics, 11, 125.

    Article  Google Scholar 

  24. The Uniprot Consortium. (2012). Nucleic Acids Research, 40, 71–75.

    Article  Google Scholar 

  25. Zhang, R., & Lin, Y. (2009). Nucleic Acids Research, 37, D455–D458.

    Article  CAS  Google Scholar 

  26. Li, W., & Godzik, A. (2006). Bioinformatics, 22(13), 1658–1659.

    Article  CAS  Google Scholar 

  27. Altschul, S. F., et al. (1990). Journal of Molecular Biology, 215, 403–410.

    CAS  Google Scholar 

  28. Moriya, Y., et al. (2007). Nucleic Acids Research, 35, W182–W185.

    Article  Google Scholar 

  29. Yu, N. Y., et al. (2010). Bioinformatics, 26(13), 1608–1615.

    Article  CAS  Google Scholar 

  30. Sali, A., et al. (2000). Annual Review of Biophysics and Biomolecular Structure, 29, 291–325.

    Article  Google Scholar 

  31. Laskowski, R. A., et al. (1993). Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  32. Colovos, C., & Yeates, T. O. (1993). Protein Science, 2, 1511–1519.

    Article  CAS  Google Scholar 

  33. Dundas, J., et al. (2006). Nucleic Acid Research, 34, W116–W118.

    Article  CAS  Google Scholar 

  34. Barbosa, M. D., et al. (2002). Antimicrobial Agents and Chemotherapy, 46, 943–946.

    Article  CAS  Google Scholar 

  35. Baum, E. Z., et al. (2001). Antimicrobial Agents and Chemotherapy, 45, 3182–3188.

    Article  CAS  Google Scholar 

  36. Bachelier, A., et al. (2006). Bioorganic & Medicinal Chemistry Letters, 16, 5605–5609.

    Article  CAS  Google Scholar 

  37. Mendgen, T. (2010). Bioorganic & Medicinal Chemistry Letters, 20, 5757–5762.

    Article  CAS  Google Scholar 

  38. Fransisco, G. D., et al. (2004). Bioorganic & Medicinal Chemistry Letters, 14, 235–238.

    Article  Google Scholar 

  39. Eschenburg, S., et al. (2005). Journal of Biological Chemistry, 280, 3757–3763.

    Article  CAS  Google Scholar 

  40. Han, H., et al. (2010). Biochemistry, 49, 4276–4282.

    Article  CAS  Google Scholar 

  41. Dunsmore, C. J., et al. (2008). Bioorganic & Medicinal Chemistry Letters, 18, 1730–1734.

    Article  CAS  Google Scholar 

  42. Bronson, J. J., et al. (2003). Bioorganic & Medicinal Chemistry Letters, 13, 873–875.

    Article  CAS  Google Scholar 

  43. Yang, Y., et al. (2006). Antimicrobial Agents and Chemotherapy, 50, 556–564.

    Article  CAS  Google Scholar 

  44. Kutterer, K. M. K., et al. (2005). Bioorganic & Medicinal Chemistry Letters, 15, 2527–2531.

    Article  CAS  Google Scholar 

  45. Anante, S., et al. (2006). Bioorganic & Medicinal Chemistry Letters, 16, 176–180.

    Article  Google Scholar 

  46. Li, Z., et al. (2003). Bioorganic & Medicinal Chemistry Letters, 13, 2591–2594.

    Article  CAS  Google Scholar 

  47. Sybyl 7.1, Tripos Inc, St. Louis, MO 63144, USA.

  48. Maestro, version 9.0, Schrödinger, LLC, New York, NY, 2009.

  49. Friesner, R. A., et al. (2004). Journal of Medicinal Chemistry, 47(7), 1739–1749.

    Article  CAS  Google Scholar 

  50. QikProp, version 3.1. (2008). Schrödinger Inc., LLC, New York, USA.

  51. Case, D. A., et al. (2010). AMBER 11. San Francisco: University of California.

    Google Scholar 

  52. Jorgensen, W. L., et al. (1983). Journal of Chemical Physics, 79, 926–935.

    Article  CAS  Google Scholar 

  53. Darden, T., et al. (1993). Journal of Chemical Physics, 98, 10089–10092.

    Article  CAS  Google Scholar 

  54. Verlet, L. (1967). Physical Review, 159, 98–103.

    Article  CAS  Google Scholar 

  55. Ryckaert, J. P., et al. (1977). Journal of Computational Physics, 23, 327–341.

    Article  CAS  Google Scholar 

  56. Srinivasan, J., et al. (1998). Journal of the American Chemical Society, 120, 9401–9409.

    Article  CAS  Google Scholar 

  57. Gautam, A., et al. (2010). International Journal of Integrative Biology, 10(2), 66–75.

    CAS  Google Scholar 

  58. Gautam, A., et al. (2010). Critical Reviews in Biotechnology, 31(4), 295–336.

    Article  Google Scholar 

  59. Bugg, T. D. H., et al. (2011). Trends Biotechnology, 29(4), 167–173.

    Article  CAS  Google Scholar 

  60. Silver, L. L. (2003). Current Opinion in Microbiology, 6, 431–438.

    Article  CAS  Google Scholar 

  61. Zoelby, A. E., et al. (2003). Molecular Microbiology, 47(1), 1–12.

    Google Scholar 

  62. Schneider, T., & Sahl, H. G. (2010). International Journal of Medical Microbiology, 300, 161–169.

    Article  CAS  Google Scholar 

  63. Lopez, J. M., et al. (2006). Peptides, 27, 3115–3121.

    Article  Google Scholar 

  64. Benson, T. E., et al. (1993). Biochemistry, 32, 2024–2030.

    Article  CAS  Google Scholar 

  65. Kim, D. H., et al. (1996). Biochemistry, 35, 4923–4928.

    Article  CAS  Google Scholar 

  66. Benson, T. E., et al. (1997). Biochemistry, 36, 806–811.

    Article  CAS  Google Scholar 

  67. Skarzynski, T., et al. (1998). Biochemistry, 37(8), 2572–2577.

    Article  CAS  Google Scholar 

  68. Jackson, S. G., et al. (2009). Biochemistry, 41, 11715–11723.

    Article  Google Scholar 

  69. Thomas, A. M., et al. (2004). European Journal of Biochemistry, 271, 2682–2690.

    Article  CAS  Google Scholar 

  70. Skarzynski, T., et al. (1996). Structure, 4(2), 1465–1474.

    Article  CAS  Google Scholar 

  71. Nishida, S., et al. (2006). Journal of Biological Chemistry, 281, 1714–1724.

    Article  CAS  Google Scholar 

  72. Anuradha, C.M., et al (2009). Available at Nature Precedings http://hdl.handle.net/10101/npre.2009.3731.1.

  73. Eschenburg, S., et al. (2005). Journal of Biological Chemistry, 280, 14070–14075.

    Article  CAS  Google Scholar 

  74. Kumar, V., et al. (2010). Journal of Molecular Modeling, 17(5), 939–953.

    Article  Google Scholar 

  75. Weatherall, C., & Dible, J. H. (2005). Journal Bacteriology Pathology, 32(3), 413–417.

    Article  Google Scholar 

  76. Online: http://ebookbrowse.com/poster-mura-medchemkongress-hd-032009-final-pdf-d99090931.

Download references

Acknowledgments

Authors acknowledge the financial support provided by the UGC-CSIR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Tewari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3810 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, N., Khokhar, M., Jain, V. et al. Identification of Druggable Targets for Acinetobacter baumannii Via Subtractive Genomics and Plausible Inhibitors for MurA and MurB. Appl Biochem Biotechnol 171, 417–436 (2013). https://doi.org/10.1007/s12010-013-0372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0372-2

Keywords

Navigation