Skip to main content
Log in

Prediction of Optimal pH in Hydrolytic Reaction of Beta-glucosidase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This is the continuation of our studies to use very basic information on enzyme to predict optimal reaction parameters in enzymatic reactions because the gap between available enzyme sequences and their available reaction parameters is widening. In this study, 23 features selected from 540 plus features of individual amino acid as well as a feature combined whole protein information were screened as independents in a 20-1 feedforward backpropagation neural network for predicting optimal pH in beta-glucosidase’s hydrolytic reaction because this enzyme drew attention recently due to its role in biofuel industry. The results show that 11 features can be used as independents for the prediction, while the feature of amino acid distribution probability works better than the rest independents for the prediction. Our study paves a way to predict the optimal reaction parameters of enzymes based on the amino acid features of enzyme sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yan, S., & Wu, G. (2011). Applied Biochemistry and Biotechnology, 165, 856–69.

    Article  CAS  Google Scholar 

  2. Yan, S., & Wu, G. (2012). Applied Biochemistry and Biotechnology, 166, 997–1007.

    Article  CAS  Google Scholar 

  3. Jeng, W. Y., Wang, N. C., Lin, M. H., Lin, C. T., Liaw, Y. C., Chang, W. J., et al. (2011). Journal of Structural Biology, 173, 46–56.

    Article  CAS  Google Scholar 

  4. Sticklen, M. (2006). Current Opinion in Biotechnology, 17, 315–319.

    Article  CAS  Google Scholar 

  5. Alexov, E. (2004). European Journal of Biochemistry, 271, 173–185.

    Article  CAS  Google Scholar 

  6. Garcia-Moreno, B. (2009). Journal of Biology, 8, 98.

    Article  Google Scholar 

  7. Mitra, R. C., Zhang, Z., & Alexov, E. (2011). Proteins, 79, 925–936.

    Article  CAS  Google Scholar 

  8. Talley, K., & Alexov, E. (2010). Proteins, 78, 2699–2706.

    CAS  Google Scholar 

  9. Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Söhngen, C., Stelzer, M., Thiele, J. and Schomburg, D. (2011) Nucleic Acids Research, 39 (Database issue), D670-D676

  10. Berrin, J. G., Czjzek, M., Kroon, P. A., McLauchlan, W. R., Puigserver, A., Williamson, G., et al. (2003). Biochemical Journal, 373, 41–48.

    Article  CAS  Google Scholar 

  11. Tsukada, T., Igarashi, K., Fushinobu, S., & Samejima, M. (2008). Biotechnology and Bioengineering, 15, 1295–1302.

    Article  Google Scholar 

  12. The UniProt Consortium (2010) Nucleic Acids Research, 38, D142–D148.

  13. Burlingame, A. L., & Carr, S. A. (1996). Mass spectrometry in the biological sciences. Totowa: Humana.

    Book  Google Scholar 

  14. Darby, N. J., & Creighton, T. E. (1993). Journal of Molecular Biology, 232, 873–896.

    Article  CAS  Google Scholar 

  15. Zamyatin, A. A. (1972). Progress in Biophysics and Molecular Biology, 24, 107–123.

    Article  Google Scholar 

  16. Cooper, G. M. (2004). The cell: a molecular approach (p. 51). Washington: ASM.

    Google Scholar 

  17. Kyte, J., & Doolittle, R. F. (1982). Journal of Molecular Biology, 157, 105–132.

    Article  CAS  Google Scholar 

  18. Trinquier, G., Sanejouand, Y. H., & Hausman, R. E. (1998). Protein Engineering, 11, 153–169.

    Article  CAS  Google Scholar 

  19. Dwyer, D. S. (2005). BMC Chemical Biology, 5, 2.

    Article  Google Scholar 

  20. Chou, P. Y., & Fasman, G. D. (1978). Advance in Enzymology and Related Subjects in Biochemistry, 47, 45–148.

    CAS  Google Scholar 

  21. Wu, G., & Yan, S. (2006). Protein Peptides Letters, 13, 377–384.

    Article  CAS  Google Scholar 

  22. Wu, G., & Yan, S. (2006). Acta Pharmacologia Sinica, 27, 513–526.

    Article  CAS  Google Scholar 

  23. Wu, G., & Yan, S. (2008). Lecture notes on computational mutation. New York: Nova Science.

    Google Scholar 

  24. Wu, G., & Yan, S. M. (2002). Molecular Biology Today, 3, 55–69.

    CAS  Google Scholar 

  25. Yan, S., & Wu, G. (2010). Journal of Guangxi Academy of Sciences, 17, 145–150.

    Google Scholar 

  26. Demuth, H. and Beale, M. (2001) Neural network toolbox for use with MatLab. Users guide. version 4.

  27. MathWorks (1984–2001) MatLabthe language of technical computing. (version 6.1.0.450, release 12.1).

  28. Chou, K. C. (2011). Journal of Theoritical Biology, 273, 236–247.

    Article  CAS  Google Scholar 

  29. Sokal, R. R., & Rohlf, F. J. (1995). Biometry: the principles and practices of statistics in biological research (3rd ed., pp. 203–218). New York: W. H. Freeman.

    Google Scholar 

  30. Chan, P., & Warwicker, J. (2009). BMC Biology, 7, 69.

    Article  Google Scholar 

  31. Feller, W. (1968). An introduction to probability theory and its applications (3rd ed., Vol. I). New York: Wiley.

    Google Scholar 

Download references

Acknowledgments

This study was partly supported by Guangxi Science Foundation (0991006Z, 10-046-06, 2010GXNSFF013003, 11-031-11, and 12-071-10) and by Guangxi Academy of Sciences (11YJ24KY01). The authors wish to thank the Library of Guangxi Zhuang Autonomous Region for purchasing the book, Biometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Wu, G. Prediction of Optimal pH in Hydrolytic Reaction of Beta-glucosidase. Appl Biochem Biotechnol 169, 1884–1894 (2013). https://doi.org/10.1007/s12010-013-0103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0103-8

Keywords

Navigation