Skip to main content

Advertisement

Log in

Bioprocess Design for the Microbial Production of Natural Phenolic Compounds by Debaryomyces hansenii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Debaryomyces hansenii NRRL Y-7426 metabolised ferulic acid into different phenolic compounds using a factorial design where glucose concentration (in the range of 1–20 g/L), peptone concentration (2–20 g/L) and yeast extract concentration (0.2–10 g/L) were the independent variables. The interrelationship between dependent and operational variables was well fitted (R 2 > 0.95) to models including linear, interaction and quadratic terms. Depending on the glucose and nitrogen concentrations, which redirected the metabolism, the major degradation products were 1,226.2 mg 4-vinyl guaiacol/L after 72 h (molar yield of 86.0 %), 1,077.8 mg vanillic acid/L after 360 h (molar yield of 91.1 %) or 1,682.6 mg acetovanillone/L after 408 h (molar yield of 98.8 %) in fermentations carried out with 2,000 mg ferulic acid/L. Other metabolites such as vanillin, vanillyl alcohol or 4-ethylguaiacol were present in lower amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Donaghy, J. A., Kelly, P. F., & McKay, A. (1999). Conversion of ferulic acid to 4-vinyl guaiacol by yeasts isolated from unpasteurised apple juice. Journal Science Food Agreculteurs, 79, 453–456.

    Article  CAS  Google Scholar 

  2. Priefert, H., Rabenhorst, J., & Steinbüchel, A. (2001). Biotechnological production of vanillin. Applied Microbiology and Biotechnology, 56, 296–314.

    Article  CAS  Google Scholar 

  3. Shanker, K. S., Kishore, K. H., Kanjilal, S., Misra, S., Murty, U. S. N., & Prasad, R. B. N. (2007). Biotransformation of ferulic acid to acetovanillone using Rhizopus oryzae. Biocatal Biotransfor, 25, 109–112.

    Article  CAS  Google Scholar 

  4. Ghosh, S., Sachan, A., Sen, S. K., & Mitra, A. (2007). Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. Journal of Industrial Microbiology and Biotechnology, 34, 131–138.

    Article  CAS  Google Scholar 

  5. Abdelkafi, S., Labat, M., Gam, Z. B. A., Lorquin, J., Casalot, L., & Sayadi, S. (2008). Optimized conditions for the synthesis of vanillic acid under hypersaline conditions by Halomonas elongate DSM 2581 T resting cells. World Journal Microbiology Biotherapy, 24, 675–680.

    Article  CAS  Google Scholar 

  6. Baqueiro-Peña, I., Rodríguez-Serrano, G., González-Zamora, E., Augur, C., Loera, O., & Saucedo-Castañeda, G. (2010). Biotransformation of ferulic acid to 4-vinyl guaiacol by a wild and a diploid strain of Aspergillus niger. Bioresource Technology, 101, 4721–4724.

    Article  Google Scholar 

  7. Mathew, S., Abrahama, T. E., & Sudheesh, S. (2007). Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii. Journal of Molecular Catalysis B: Enzymatic, 44, 48–52.

    Article  CAS  Google Scholar 

  8. Narziss, L., Miedaner, H., & Nitzsche, F. (1990). Formation of 4-vinyl guaiacol during production of Bavarian wheatbeer. Monatsschrift Brauwiss, 43, 96–100.

    CAS  Google Scholar 

  9. Arfman, H. A., Abraham, W. R., & Naturforsch, Z. (1989). Microbial formation of substituted styrenes. Zhurnal Naturforschende Section C: Bioscience, 44, 765–770.

    Google Scholar 

  10. Hakakeyama, H., Hayashi, E., & Haraguchi, T. (1977). Biodegradation of poly(3-methoxy-4-hydroxystyrene). Polymer, 18, 759–763.

    Article  Google Scholar 

  11. Iwabuchi, S., Nakahira, T., Inohara, A., Uchida, H., & Kojima, K. (1977). Polymeric catechol derivatives: polymerisation behaviour of 4-vinyl catechol and properties of their derivatives. Journal of Polymer Science, 21, 1877–1884.

    Google Scholar 

  12. Clavijo, E., Menéndez, J. R., & Aroca, R. (2008). Vibrational and surface-enhanced Raman spectra of vanillic acid. Journal of Raman Specroscopy, 39, 1178–1182.

    Article  CAS  Google Scholar 

  13. Webster, T. M. (1995). New perspectives on vanilla. Cereal Food World, 40, 198–200.

    Google Scholar 

  14. Sachdev, D., Dubey, A., Mishra, B. G., & Kannan, S. (2008). Environmentally benign liquid phase oxidation of vanillin over copper containing ternary hydrotalcites. Catalysis Communications, 9, 391–394.

    Article  CAS  Google Scholar 

  15. Zhang, Z., Liao, L., Moore, J., Wu, T., & Wang, Z. (2009). Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chemistry, 113, 160–165.

    Article  CAS  Google Scholar 

  16. Dhar, A., Lee, K. S., Dhar, K., & Rosazza, J. P. N. (2007). Nocardia sp. vanillic acid decarboxylase. Enzyme Microbiology Techical, 41, 271–277.

    Article  CAS  Google Scholar 

  17. Lafeber, F. P. J. G., Beukelman, C. J., van den Worm, E., van Roy, J. L. A. M., Vianen, M. E., van Roon, J. A. G., et al. (1999). Apocynin, a plant-derived, cartilage-saving drug, might be useful in the treatment of rheumatoid arthritis. Rheumatology, 38, 1088–1093.

    Article  CAS  Google Scholar 

  18. Muijsers, R. B. R., van den Worm, E., Folkerts, G., Beukelman, C. J., Koster, A. S., Postma, D. S., et al. (2000). Apocynin inhibits peroxynitrite formation by murine macrophages. British Journal Pharmacological, 130, 932–936.

    Article  CAS  Google Scholar 

  19. Hart, B. A., Simons, J. M., Knaan-Shanzer, S., Bakker, N. P., & Labadie, R. P. (1990). Antiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Radical Biology Medicine, 9, 127–131.

    Article  Google Scholar 

  20. Van den Worm, E., Beukelman, C. J., Van den Berg, A. J., Kroes, B. H., Labadie, R. P., & Van Dijk, H. (2001). Effects of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. European Journal of Pharmacology, 433, 225–230.

    Article  Google Scholar 

  21. Palmen, M. J. H. J., Beukelman, C. J., Mooij, R. G. M., Pena, A. S., & van Rees, E. P. (1995). Anti-inflammatory effect of apocynin, a plant-derived NADPH oxidase antagonist, in acute experimental colitis. The Netherlands Journal of Medicine, 47, 41–41.

    Article  Google Scholar 

  22. Peters, E. A., Hiltermann, J. T., & Stolk, J. (2001). Effects of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. Free Radical Biology Medicine, 31, 1442–1447.

    Article  CAS  Google Scholar 

  23. Bustos, G., Molde, A. B., Cruz, J. M., & Domínguez, J. M. (2005). Production of lactic acid from vine-trimming wastes and viticulture lees using a simultaneous saccharification fermentation method. Journal. Science. Food Agriculture, 85, 466–472.

    Article  CAS  Google Scholar 

  24. Max, B., Salgado, J. M., Cortés, S., & Dominguez, J. M. (2010). Extraction of phenolic acids by alkaline hydrolysis from the solid residue obtained after prehydrolysis of trimming vine shoots. Journal. Agricultural Food Chemistry, 58, 1909–1917.

    Article  CAS  Google Scholar 

  25. Muralidhar, R., Gummadi, S. N., Dasu, V. V., & Panda, T. (2003). Statistical analysis on some critical parameters affecting the formation of protoplasts from the mycelium of Penicillium griseofulvum. Biochemical Engineering Journal, 16, 229–235.

    Article  CAS  Google Scholar 

  26. Rao, Y. K., Lu, S. C., Liu, B. L., & Tzeng, Y. M. (2006). Enhanced production of an extracellular protease from Beauveria bassiana by optimization of cultivation processes. Biochemical Engineering Journal, 28, 57–66.

    Article  CAS  Google Scholar 

  27. Karmakar, B., Vohra, R. M., Nandanwar, H., Sharma, P., Gupta, K. G., & Sobti, R. C. (2000). Rapid degradation of ferulic acid via 4-vinyl guaiacol and vanillin by a newly isolated strain of Bacillus coagulans. Journal of Biotechnology, 80, 195–202.

    Article  CAS  Google Scholar 

  28. Huang, Z., Dostal, L., & Rosazza, J. P. N. (1993). Microbial transformation of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens. Applied and Environmental Microbiology, 59, 2244–2250.

    CAS  Google Scholar 

  29. Sutherland, J. B., Tanner, L. A., Moore, J. D., Freeman, J. P., Deck, J., & Williams, A. J. (1995). Conversion of ferulic acid to 4-vinyl guaiacol by yeasts isolated from frozen concentrated orange juice. Jouranl Food Protection, 58, 1260–1262.

    CAS  Google Scholar 

  30. Turner, J. A., & Rice, E. L. (1975). Microbial decomposition of ferulic acid in soi1. Journal of Chemical Ecology, 1, 41–58.

    Article  CAS  Google Scholar 

  31. Clausen, M., Lamb, C. J., Megnet, R., & Doemer, P. W. (1994). PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae. Gene, 142, 107–112.

    Article  CAS  Google Scholar 

  32. Lee, I., Volm, T. G., & Rosazza, J. P. N. (1998). Decarboxylation of ferulic acid to 4-vinyl guaiacol by Bacillus pumilus in aqueous-organic solvent two-phase systems. Enzyme Microbial. Techniques, 23, 261–266.

    Article  CAS  Google Scholar 

  33. Malarczyk, E., Rogalski, J., & Leonowicz, A. (1994). Transformation of ferulic acid by soil bacteria Nocardia provides various valuable phenolic compounds. Acta Biotechnologica, 14, 235–241.

    Article  CAS  Google Scholar 

  34. Rahouti, M., Seigle-Murandi, F., Steiman, R., & Eriksson, K. E. (1989). Metabolism of ferulic acid by Paecilomyces variotii and Pestalotia palmarum. Applied and Environmental Microbiology, 55, 2391–2398.

    CAS  Google Scholar 

  35. Huang, Z., Dostal, L., & Rosazza, J. P. N. (1993). Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. The Journal of Biological Chemistry, 268, 23954–23958.

    CAS  Google Scholar 

  36. Overhage, J., Priefert, H., Rabenhors, H., & Steinbuchel, A. (1999). Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Applied Microbiology and Biotechnology, 52, 820–828.

    Article  CAS  Google Scholar 

  37. Falconnier, B., Lapierre, C., Lesage-Meesen, L., Yonnet, G., Brunerie, P., Colonna-Ceccaldi, B., et al. (1994). Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: identification of metabolic pathways. Journal of Biotechnology, 37, 123–132.

    Article  CAS  Google Scholar 

  38. Brunati, M., Marinelli, F., Bertolini, C., Gandolfi, R., Daffonchio, D., & Molinari, F. (2004). Biotransformations of cinnamic and feruli acid with actinomycetes. Enzyme Microbial Technology, 34, 3–9.

    Article  CAS  Google Scholar 

  39. Gurujayalakshmi, G., & Mahadevan, A. (1987). Dissimiliation of ferulic acid by Bacillus subtilis. Current Microbiology, 16, 69–73.

    Article  Google Scholar 

  40. De Faveri, D., Torre, P., Aliakbarian, B., Domínguez, J. M., Perego, P., & Converti, A. (2007). Response surface modeling of vanillin production by Escherichia coli JM109pBB1. Biochemical Engineering Journal, 36, 268–275.

    Article  Google Scholar 

  41. Torres, B. R., Aliakbarian, B., Torre, P., Perego, P., Domínguez, J. M., Zilli, M., et al. (2009). Vanillin bioproduction from alkaline hydrolyzate of corn cob by Escherichia coli JM109/pBB. Enzyme Microbial Technical, 44, 154–158.

    Article  CAS  Google Scholar 

  42. Barghini, P., Montebove, F., Ruzzi, M., & Schiesser, A. (1998). Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells. Applied Microbiology and Biotechnology, 49, 309–314.

    Article  CAS  Google Scholar 

  43. Jurkova, M., & Wurst, M. (1993). Biodegradation of aromatic carboxylic acids by Pseudomonas mira. FEMS Microbiology Letters, 111, 140–149.

    Article  Google Scholar 

  44. Gunnarsson, N., & Palmqvist, E. A. (2006). Influence of pH and carbon source on the production of vanillin from ferulic acid by Streptomyces setonii ATCC 39116. Food Science, 43, 73–76.

    CAS  Google Scholar 

  45. Muheim, A., & Lerch, K. (1999). Towards a high yield bioconversion of ferulic acid to vanillin. Applied Microbiology and Biotechnology, 51, 456–461.

    Article  CAS  Google Scholar 

  46. Sutherland, J. B., Crawford, D. L., & Pometto, A. L., III. (1983). Metabolism of cinnamic and ferulic acids by Streptomyces setonii. Canadian Journal of Microbiology, 29, 1253–1257.

    Article  CAS  Google Scholar 

  47. Ghosh, S., Sachan, A., & Mitra, A. (2006). Formation of vanillic acid from ferulic acid by Paecilomyces variotii MTCC 6581. Current Science, 90, 825–829.

    CAS  Google Scholar 

  48. Rosazza, J. P. N., Huang, Z., Dostal, L., Volm, T., & Rousseau, B. (1995). Biocatalytic transformations of ferulic acid: an abundant aromatic natural product. Journal of Industrial Microbiology, 15, 457–471.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of this work to the Spanish Ministry of Science and Innovation (project CTQ2011-28967) which has partial financial support from the FEDER funds of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Domínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Max, B., Tugores, F., Cortés-Diéguez, S. et al. Bioprocess Design for the Microbial Production of Natural Phenolic Compounds by Debaryomyces hansenii . Appl Biochem Biotechnol 168, 2268–2284 (2012). https://doi.org/10.1007/s12010-012-9935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9935-x

Keywords

Navigation