Skip to main content
Log in

Adsorption Equilibrium, Kinetics and Thermodynamics of α-Amylase on Poly(DVB-VIM)-Cu+2 Magnetic Metal-Chelate Affinity Sorbent

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Designing an immobilised metal ion affinity process on large-scale demands that a thorough understanding be developed regarding the adsorption behaviour of proteins on metal-loaded gels and the characteristic adsorption parameters to be evaluated. In view of this requirement, interaction of α-amylase as a model protein with newly synthesised magnetic-poly(divinylbenzene-1-vinylimidazole) [m-poly(DVB-VIM)] microbeads (average diameter, 53–212 μm) was investigated. The m-poly(DVB-VIM) microbeads were prepared by copolymerising of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The m-poly(DVB-VIM) microbeads were characterised by N2 adsorption/desorption isotherms, electron spin resonance, elemental analysis, scanning electron microscope and swelling studies. Cu2+ ions were chelated on the m-poly(DVB–VIM) beads and used in adsorption of α-amylase in a batch system. The maximum α-amylase adsorption capacity of the m-poly(DVB–VIM)–Cu2+ beads was determined as 10.84 mg/g at pH 6.0, 25 °C. The adsorption data were analyzed using three isotherm models, which are the Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. The pseudo-first-order, pseudo-second-order, modified Ritchie’s-second-order and intraparticle diffusion models were used to test dynamic experimental data. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Porath, J., & Olin, B. (1983). Immobilised metal ion affinity adsorption and immobilised metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilised iron and nickel ions. Biochemistry, 22, 1621.

    Article  CAS  Google Scholar 

  2. Gupta, R., Mohapatra, H., Goswami, V., & Chauhan, B. (2003). Microbial α-amylases: a biotechnological perspective. Proceeding Biochemical, 38, 1.

    Google Scholar 

  3. Bayramoğlu, G., Yılmaz, M., & Arıca, M. Y. (2004). Immobilisation of a thermostable a-amylase onto reactive membranes: kinetics characterization and application to continuous starch hydrolysis. Food Chemistry, 84, 591.

    Article  Google Scholar 

  4. Guiavarch, Y., Loey, A. V., Zuber, F., & Hendrickx, M. (2004). Bacillus licheniformis alpha-amylase immobilised on glass beads and equilibrated at low moisture content: potentials as a time temperature integrator (TTI) for sterilization processes. Innovation Food Science Emergency, 5, 317.

    Article  CAS  Google Scholar 

  5. Kara, A., Osman, B., Yavuz, H., Besirli, N., & Denizli, A. (2005). Immobilisation of a- amylase on Cu2+-chelated Poly (ethylene glycol dimethacrylate -n-vinyl imidazole) matrix via adsorption. Reactive and Functional Polymers, 62, 61.

    Article  CAS  Google Scholar 

  6. Bryjak, J. (2003). Glucoamylase, a-amylase and [beta]-amylase immobilisation on acrylic carriers. Biochemical Engineering Journal, 16, 347.

    Article  CAS  Google Scholar 

  7. El-Batal, A. I., Atia, K. S., & Eid, M. (2005). Stabilization of a-amylase by using anionic surfactant during the immobilisation process. Radiation Physics and Chemistry, 74, 96.

    Article  CAS  Google Scholar 

  8. Konsoula, Z., & Liakopoulou-Kyriakides, M. (2006). Starch hydrolysis by the action of an entrapped in alginate capsules alpha-amylase from Bacillus subtilis. Process Biochemistry, 41, 343.

    Article  CAS  Google Scholar 

  9. Namdeo, M., & Bajpai, S. K. (2009). Immobilisation of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. Journal Molecular Catalysis B, 59, 134.

    Article  CAS  Google Scholar 

  10. Liao, Y. C., & Syu, M. J. (2005). Novel immobilised metal ion affinity adsorbent based on cross-linked b-cyclodextrin matrix for repeated adsorption of α-amylase. Biochemical Engineering Journal, 23, 17.

    Article  CAS  Google Scholar 

  11. Osman, B., Kara, A., Uzun, L., Beşirli, N., & Denizli, A. (2005). Vinyl imidazole carrying metal-chelated beads for reversible use in yeast invertase adsorption. Journal of Molecular Catalysis B: Enzymatic, 37, 88.

    Article  CAS  Google Scholar 

  12. Kök, S., Osman, B., Kara, A., & Besirli, N. (2011). Vinyl Triazole Carrying Metal Chelated Beads For Reversible Immobilization of Glucoamylase. Journal of Applied Polymer Science, 120, 2563.

    Article  Google Scholar 

  13. Sharma, S., & Agarwal, G. P. (2001). Interactions of Proteins with Immobilised Metal Ions: a Comparative Analysis Using Various Isotherm Models. Analytical Biochemistry, 288, 126.

    Article  CAS  Google Scholar 

  14. Sharma, S., & Agarwal, G. P. (2002). Adsorption equilibrium and kinetics of egg-white proteins on immobilized metal ion affinity gels for designing fractionation. Adsorption, 8, 203.

    Article  CAS  Google Scholar 

  15. Nguyen, Q. D., Rezessy-Szabo, J. M., Claeyssens, M., Stals, I., & Hoschke, A. (2002). Purification and characterisation of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzyme and Microbial Technology, 31, 345.

    Article  CAS  Google Scholar 

  16. Sohmiya, M., Ogawa, M. (2012). Controlled spatial distribution of tris(2,2′-bipyridine)ruthenium cation ([Ru(bpy)3]2+) in aluminum containing mesoporous silicas. Microporous and Mesoporous Materials 142, 363.

    Google Scholar 

  17. Wu, X. W., Ma, H. W., Li, J. H., Zhang, J., & Li, Z. H. J. (2007). The synthesis of mesoporous aluminosilicate using microcline for adsorption of mercury(II). Colloid Interface Science, 315, 555.

    Article  CAS  Google Scholar 

  18. Li, J., Miao, X. M., Hao, Y., Zhao, J., Sun, X., & Wang, L. (2008). Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(VI). Journal of Colloid and Interface Science, 318, 309.

    Article  CAS  Google Scholar 

  19. Şenel, S., Uzun, L., Kara, A., & Denizli, A. (2008). Heavy metal removal synthetic solutions with magnetic beads under magnetic field. Journal Macromolecular Science Pure and Applied Chemistry A, 45, 635.

    Article  Google Scholar 

  20. Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., & Pandey, A. (2006). Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technology and Biotechnology, 44, 269.

    CAS  Google Scholar 

  21. Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 25, 1.

    Google Scholar 

  22. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451.

    Article  CAS  Google Scholar 

  23. Daoud, F. B., Kaddour, S., & Sadoun, T. (2010). Adsorption of cellulase Aspergillus niger on a commercial activated carbon: Kinetics and equilibrium studies. Colloids and Surfaces. B, Biointerfaces, 75, 93.

    Article  CAS  Google Scholar 

  24. Plazinski, W., Rudzinski, W., & Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Advances in Colloid and Interface Science, 152, 2.

    Article  CAS  Google Scholar 

  25. Zhao, Z., Wang, X., Zhao, C., Zhu, X., & Du, S. (2010). Adsorption and desorption of antimony acetate on sodium montmorillonite. Journal of Colloid and Interface Science, 345, 154.

    Article  CAS  Google Scholar 

  26. Hoa, Y. S., & Ofomaja, A. E. (2006). Kinetic studies of copper ion adsorption on palm kernel fibre. Journal Hazards Materials B, 137, 1796.

    Article  Google Scholar 

  27. Ertugay, N., & Bayhan, Y. K. (2010). The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination, 255, 137.

    Article  CAS  Google Scholar 

  28. Sağ, Y., & Kutsal, T. (2000). Determination of the biosorption activation energies of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Process Biochemistry, 35, 801.

    Article  Google Scholar 

  29. Kara, A., Acemioğlu, B., Alma, M. H., & Cebe, M. (2006). Adsorption of Cr(II), Ni(II), Zn(II), Co(II) ions onto phenolated wood resin. Journal of Applied Polymer Science, 101, 2838.

    Article  CAS  Google Scholar 

  30. Tekin, N., Kadıncı, E., Demirbaş, Ö., Alkan, M., & Kara, A. (2006). Adsorption of polyvinylimidazole onto kaolinite. Journal of Colloid and Interface Science, 296, 472.

    Article  CAS  Google Scholar 

  31. Doğan, M., Alkan, M., & Onganer, Y. (2000). Adsorption of methylene blue on perlite from aqueous solutions. Water, Air, and Soil Pollution, 120, 229.

    Article  Google Scholar 

  32. Namasivayam, C., & Kavita, D. (2002). Removal of congo red from water by adsorption on to activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigment, 54, 47.

    Article  CAS  Google Scholar 

  33. Laus, R., Costa, T. G., Szpoganicz, B., & Fávere, V. T. (2010). Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. Journal of Hazardous Materials, 183, 233.

    Article  CAS  Google Scholar 

  34. Chen, A. H., Liu, S. C., & Chen, C. Y. (2008). Comparative adsorption of Cu(II), Zn(II) and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. Journal of Hazardous Materials, 154, 184.

    Article  CAS  Google Scholar 

  35. Tripathy, S. S., & Raichur, A. M. (2008). Abatement of fluoride from water using manganese dioxide-coated activated alumina. Journal of Hazardous Materials, 153, 1043.

    CAS  Google Scholar 

  36. Özcan, A., Özcan, A. S., Tunali, S., Akar, T., & Kiran, I. (2005). Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of capsicum annuum. Journal of Hazardous Materials, 124, 200.

    Article  Google Scholar 

  37. Ünlü, N., & Ersoz, M. (2006). Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. Journal Hazards Materials B, 136, 272.

    Article  Google Scholar 

  38. Tassist, A., Lounici, H., Abdi, N., & Mameri, N. (2010). Equilibrium, kinetic and thermodynamic studies on aluminum biosorption by a mycelial biomass (Streptomyces rimosus). Journal of Hazardous Materials, 183, 35.

    Article  CAS  Google Scholar 

  39. Zhou, Y. T., White, C. B., Nie, H. L., & Zhu, L. M. (2009). Adsorption mechanism of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. Colloids and Surfaces B Biointerfaces, 74, 244.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilgen Osman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osman, B., Kara, A., Demirbel, E. et al. Adsorption Equilibrium, Kinetics and Thermodynamics of α-Amylase on Poly(DVB-VIM)-Cu+2 Magnetic Metal-Chelate Affinity Sorbent. Appl Biochem Biotechnol 168, 279–294 (2012). https://doi.org/10.1007/s12010-012-9771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9771-z

Keywords

Navigation