Skip to main content

Advertisement

Log in

Cyproterone Synthesis, Recognition and Controlled Release by Molecularly Imprinted Nanoparticle

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we used novel synthetic conditions of precipitation polymerization to obtain nanosized cyproterone molecularly imprinted polymers for application in the design of new drug delivery systems. The scanning electron microscopy images and Brunauer–Emmett–Teller analysis showed that molecularly imprinted polymer (MIP) prepared by acetonitrile exhibited particles at the nanoscale with a high degree of monodispersity, specific surface area of 246 m2 g−1, and pore volume of 1.24 cm3 g−1. In addition, drug release, binding properties, and dynamic light scattering of molecularly imprinted polymers were studied. Selectivity of MIPs was evaluated by comparing several substances with similar molecular structures to that of cyproterone. Controlled release of cyproterone from nanoparticles was investigated through in vitro dissolution tests and by measuring the absorbance by HPLC-UV. The pH dissolution media employed in controlled release studies were 1.0 at 37 °C for 5 h and then at pH 6.8 using the pH change method. Results show that MIPs have a better ability to control the cyproterone release in a physiological medium compared to the non molecularly imprinted polymers (NMIPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mosbach, K. (1994). Molecular imprinting. Trends in Biochemical Sciences, 19, 9–14.

    Article  CAS  Google Scholar 

  2. Esfandyari-Manesh, M., Javanbakht, M., Atyabi, F., & Dinarvand, R. (2012). Synthesis and evaluation of uniformly sized carbamazepine-imprinted microspheres and nanospheres prepared with different mole ratios of methacrylic acid to methyl methacrylate for analytical and biomedical applications. Journal of Applied Polymer Science. doi:10.1002/app. 36288.

  3. Tokonami, S., Shiigi, H., & Nagaoka, T. (2009). Review: micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications. Analytica Chimica Acta, 641, 7–13.

    Article  CAS  Google Scholar 

  4. Yang, G. L., Yin, J. F., & Li, Z. W. (2004). Chiral separation of nateglinide and its L-enantiomer on a molecularly imprinted polymer-based stationary phase. Chromatographia, 59, 705–708.

    CAS  Google Scholar 

  5. Ho, K. C., Yeh, W. M., Tung, T. S., & Liao, J. Y. (2005). Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization. Journal of Analytica Chimica Acta, 542, 90.

    Article  CAS  Google Scholar 

  6. Javanbakht, M., Eynollahi Fard, S., Mohammadi, A., Abdouss, M., Ganjali, M. R., Norouzi, P., & Safaraliee, L. (2008). Molecularly imprinted polymer based potentiometric sensor for the determination of hydroxyzine in tablets and biological fluids. Analytica Chimica Acta, 612, 65.

    Article  CAS  Google Scholar 

  7. Vallano, P. T., & Remcho, V. T. (2000). Highly selective separations by capillary electrochromatography: molecular imprint polymer sorbents. Journal of Chromatography. A, 887, 125.

    Article  CAS  Google Scholar 

  8. Kamal, A., Kumar, B. A., Arifuddin, M., & Dastidar, S. G. (2003). Synthesis of 4β-amido and 4β-sulphonamido analogues of podophyllotoxin as potential antitumour agents. Bioorganic & Medicinal Chemistry, 11, 5135.

    Article  CAS  Google Scholar 

  9. Puoci, F., Curcio, M., Cirillo, G., Lemma, F., Spizzirri, U. G., & Picci, N. (2008). Molecularly imprinted solid-phase extraction for cholesterol determination in cheese products. Food Chemistry, 106, 836.

    Article  CAS  Google Scholar 

  10. Chen, W., Han, D. K., Ahn, K. D., & Kim, J. M. (2002). Molecularly imprinted polymers having amidine and imidazole functional groups as an enzyme-mimetic catalyst for ester hydrolysis. Macromolecular Research, 10, 122–126.

    Article  CAS  Google Scholar 

  11. Suedee, R., Srichana, T., & Martin, G. (2000). Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of β-blockers. Journal of Controlled Release, 66, 135–147.

    Article  CAS  Google Scholar 

  12. Sambe, H., Hoshina, K., Moadel, R., Wainer, W., & Haginaka, J. (2006). Uniformly-sized, molecularly imprinted polymers for nicotine by precipitation polymerization. Journal of Chromatography. A, 1134, 88–94.

    Article  CAS  Google Scholar 

  13. Allender, C. J., Richardson, C., Woodhouse, B., Heard, C. M., & Brain, K. R. (2000). Pharmaceutical applications for molecularly imprinted polymers. International Journal of Pharmaceutics, 195, 39–43.

    Article  CAS  Google Scholar 

  14. Ju, J. Y., Shin, C. S., Whitcombe, M. J., & Vulfson, E. N. (1999). Imprinted polymers as tools for the recovery of secondary metabolites produced by fermentation. Biotechnology and Bioengineering, 64, 232.

    Article  CAS  Google Scholar 

  15. Alvarez-Lorenzo, C., & Concheiro, A. (2006). Molecularly imprinted materials as advanced excipients for drug delivery systems. Biotechnology Annual Review, 12, 225–268.

    Article  CAS  Google Scholar 

  16. Hiratani, H., & Alvarez-Lorenzo, C. (2002). Timolol uptake and release by imprinted soft contact lenses made of N, N-diethylacrylamide and methacrylic acid. Journal of Controlled Release, 83, 223–230.

    Article  CAS  Google Scholar 

  17. Alvarez-Lorenzo, C., & Concheiro, A. (2004). Molecularly imprinted polymers for drug delivery. Journal of Chromatography B, 804, 231–245.

    Article  CAS  Google Scholar 

  18. Alvarez-Lorenzo, C., Yanez, F., Barreiro-Iglesias, R., & Concheiro, A. (2006). Imprinted soft contact lenses as norfloxacin delivery systems. Journal of Controlled Release, 113, 236–244.

    Article  CAS  Google Scholar 

  19. Sellergren, B., & Allender, C. J. (2005). Molecularly imprinted polymers: a bridge to advanced drug delivery. Advanced Drug Delivery Reviews, 57, 1733–1741.

    Article  CAS  Google Scholar 

  20. Wikimedia Foundation, Inc. (2012). Cyproterone. http://en.wikipedia.org/wiki/Cyproterone.

  21. Azodi-Deilami, S., Abdouss, M., & Seyedi, S. R. (2010). Synthesis and characterization of molecularly imprinted polymer for controlled release of tramadol. Central European Journal of Chemistry, 8, 687–695.

    Article  Google Scholar 

  22. Azodi-Deilami, S., Abdouss, M., & Javanbakh, M. (2011). The syntheses and characterization of molecularly imprinted polymer for controlled release of bromhexine. Applied Biochemistry and Biotechnology, 164, 133–147.

    Article  CAS  Google Scholar 

  23. Abdouss, M., Asadi, E., Azodi-Deilami, S., Beik-Mohammadi, N., & Amir Aslanzadeh, S. (2011). Development and characterization of molecularly imprinted polymers for controlled release of citalopram. Journal of Materials Science. Materials in Medicine, 22, 2273–2281.

    Article  CAS  Google Scholar 

  24. Azodi-Deilami, S., Abdouss, M., & Hasani, A. R. (2010). Preparation and utilization of a molecularly imprinted polymer for solid phase extraction of tramadol. Central European Journal of Chemistry, 8, 861–869.

    Article  CAS  Google Scholar 

  25. Turchan, M., Jara-Ulloa, P., Bollo, S., Nunez-Vergara, L. J., Squella, J. A., & Alvarez-Lueje, A. (2007). Voltammetric behaviour of bromhexine and its determination in pharmaceuticals. Talanta, 73, 913.

    Article  CAS  Google Scholar 

  26. Moffat, A. C. (2004). Clarkes analysis of drugs and poisons in pharmaceuticals (3rd ed., Vol. 2). London: Pharmaceutical.

    Google Scholar 

  27. Ciardelli, G., Cioni, B., Cristallini, C., Barbani, N., Silvestri, D., & Giusti, P. (2004). Acrylic polymeric nanospheres for the release and recognition of molecules of clinical interest. Biosensors and Bioelectronics, 20, 1083.

    Article  CAS  Google Scholar 

  28. Martin, P., Jones, G. R., Stringer, F., & Wilson, I. D. (2003). Comparison of normal and reversed-phase solid phase extraction methods for extraction of beta-blockers from plasma using molecularly imprinted polymers. The Analysts Journal, 128, 345–350.

    Article  CAS  Google Scholar 

  29. Nicholls, I. A. (1997). Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers. Recent Research in Development Pure and Applied Chemistry, 1, 133.

    Google Scholar 

  30. Mullet, W. M., Walles, M., Levsen, K., Borlak, J., & Pawliszyn, J. (2004). Multidimensional on-line sample preparation of verapamil and its metabolites by a molecularly imprinted polymer coupled to liquid chromatography–mass spectrometry. Journal of Chromatography B, 801, 297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Abdouss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asadi, E., Azodi-Deilami, S., Abdouss, M. et al. Cyproterone Synthesis, Recognition and Controlled Release by Molecularly Imprinted Nanoparticle. Appl Biochem Biotechnol 167, 2076–2087 (2012). https://doi.org/10.1007/s12010-012-9748-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9748-y

Keywords

Navigation