Skip to main content

Advertisement

Log in

Biosynthesis of Silver Nanoparticles Using Latex from Few Euphorbian Plants and Their Antimicrobial Potential

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The synthesis of well-dispersed and ultrafine metal nanoparticles has great interest due to their distinctive physicochemical properties and biomedical applications. This study is the first report of one-step solvent-free synthesis of AgNPs using Euphorbiaceae plant latex. Among evaluated eight latex-producing plants, four (Jatropha curcas, Jatropha gossypifolia, Pedilanthus tithymaloides, and Euphorbia milii) showed high potential to produce physicochemically distinct, small-sized and bactericidal AgNPs. Phytochemical screening showed presence of rich amount of biochemicals in these plants. J. gossypifolia showed uniformly dispersed comparatively small-sized AgNPs. Dose-dependent growth inhibition of bacterial pathogens Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermis, and Micrococcus luteus was observed for J. gossypifolia latex-synthesized AgNPs with minimum inhibitory concentration values 30, 40, 70, 60, and 60 ppm, respectively, after 24 h. Possible mode of action of AgNPs against pathogens was confirmed by analyzing enzymes and cell leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Photoplate 1

Similar content being viewed by others

References

  1. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Huwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3, 95–101.

    Article  CAS  Google Scholar 

  2. Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine, 3, 168–171.

    Article  CAS  Google Scholar 

  3. Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Letters, 61, 1413–1418.

    Article  CAS  Google Scholar 

  4. Salunkhe, R. B., Patil, S. V., Salunke, B. K., Patil, C. D., & Sonawane, A. M. (2011). Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Applied Biochemistry and Biotechnology, 165, 221–234.

    Article  CAS  Google Scholar 

  5. Tripathy, A., Raichur, A. M., Chandrasekaran, N., Prathna, T. C., & Mukherjee, A. (2009). Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. Journal of Nanoparticle Research, 12(1), 237–246.

    Article  Google Scholar 

  6. Vivekanandhan, S., Misra, M., & Mohanty, A. K. (2009). Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: An investigation on different soybean varieties. Journal of Nanoscience and Nanotechnology, 9(12), 6828–6833.

    Article  CAS  Google Scholar 

  7. Sathishkumar, M., Sneha, K., Won, S. W., Cho, C. W., Kim, S., & Yun, Y. S. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces. B, Biointerfaces, 73, 332–338.

    Article  CAS  Google Scholar 

  8. Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13, 2981–2988. doi:10.1007/s11051-011-0631-5.

    Article  CAS  Google Scholar 

  9. Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles. Bioprocess and Biosystems Engineering, 32, 79–84.

    Article  Google Scholar 

  10. Webster, G. L. (1994). Classification of the Euphorbiaceae. Annals of the Missouri Botanical Garden, 81, 3–32.

    Article  Google Scholar 

  11. Evans, F. J., & Soper, C. J. (1978). The tigliane, daphnane and ingenane diterpenes, their chemistry, distribution and biological activities A review. Lloydia, 41, 193–233.

    CAS  Google Scholar 

  12. Wititsuwannaku, L. R., Wititsuwannakul, D., & Sakulborirug, C. (1998). A lectin from the bark of the rubber tree (Hevea brasiliensis). Phytochem, 47, 183–187.

    Article  Google Scholar 

  13. O’Keefe, B. R. (2001). Biologically active proteins from natural product extracts. Journal of Natural Products, 64, 1373–1381.

    Article  Google Scholar 

  14. Kubmarawa, D., Ajoku, G. A., Enwerem, N. M., & Okorie, D. A. (2007). Preliminary phytochemical and antimicrobial screening of 50 medicinal plants from Nigeria. African Journal of Biotechnology, 6(14), 1690–1696.

    CAS  Google Scholar 

  15. Kapoor, L.D. (1989). Handbook of Ayurdev madical plants. In Kapoor, L. D. (ed.). Med.plants. Boca Raton: CRC.

  16. Ajibesin, K. K., Bala, D. N., Ekpo, B. A. J., & Adesanya, S. A. (2002). Toxicity of some plants implicated poisons in Nigerian ethnomedicine to rats. Nigerian Journal of Natural Products and Medicine, 6, 7–9.

    Article  Google Scholar 

  17. Abo, K., & Evans, F. J. (1981). The composition of a mixture of Ingol Esters from Euphorbia kamerunica. Planta Medica, 43(12), 392–395.

    Article  CAS  Google Scholar 

  18. Nath, L. K., & Dutta, S. K. (1992). Wound healing responses of the protelytic enzyme curcain. Indian Journal of Pharmacology, 24, 114–115.

    Google Scholar 

  19. Vidotti, G. J., Zimmermann, A., Sarragiotto, M. H., Nakamura, C. V., & Dias Filho, B. P. (2006). Antimicrobial and phytochemical studies on Pedilanthus tithymaloides. Fitoterapia, 77, 43–46.

    Article  CAS  Google Scholar 

  20. Kokate, A. (1999). Phytochemical methods. Phytotherapy, 78, 126–129.

    Google Scholar 

  21. Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Dubois, M., Gilles, H. Y., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  23. Sastry, M., Patil, V., & Sainkar, S. R. (1998). Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. The Journal of Physical Chemistry. B, 102(8), 1404–1410.

    Article  CAS  Google Scholar 

  24. Nair, B., & Pradeep, T. (2002). Coalescence of nanoclusters andformation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des, 2(4), 293–298.

    Article  CAS  Google Scholar 

  25. Joerger, R., Klaus, T., & Granqvist, C. G. (2000). Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Advanced Materials, 12(6), 407–409.

    Article  CAS  Google Scholar 

  26. Mukherjee, P., Ahamd, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Ajaykumar, P. V., Alam, M., Kumar, R., & Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelia matrix: a novel biological approach to nanoparticle synthesis. Nano Letters, 1, 515–519.

    Article  CAS  Google Scholar 

  27. Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M. I., Kumar, R., & Sastri, M. (2002). Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem bio chem, 5, 461–463.

    Google Scholar 

  28. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.

    Article  CAS  Google Scholar 

  29. Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem, 9, 852–858.

    Article  CAS  Google Scholar 

  30. Egorova, E. M., & Revina, A. A. (2000). Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 168, 87–96.

    Article  CAS  Google Scholar 

  31. Abubakar El, M. M. (2009). Antibacterial activity of crude extracts of Euphorbia hirta against some bacteria associated with enteric infections. Journal Medicine Plant Research, 3(7), 498–505.

    Google Scholar 

  32. Igbinosa, O. O., Igbinosa, E. O., & Aiyegoro, O. A. (2009). Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn). Africa Journal Pharma Pharmacol, 3(2), 058–062.

    Google Scholar 

  33. Oduola, T., Avwioro, O. G., & Ayanniyi, T. B. (2005). Suitability of the leaf extract of Jatropha gossypifolia as an anticoagulant for iochemical and haematological analyses. African Journal of Biotechnology, 4(7), 679–681.

    Google Scholar 

  34. Abreu, P. M., Matthew, S., Gonza’lez, T., Vanickova, L., Costa, D., Gomes, A., Segundo, M. A., & Fernandes, E. (2008). Isolation and identification of antioxidants from Pedilanthus tithymaloides. Journal of Natural Medicines, 62, 67–70.

    Article  CAS  Google Scholar 

  35. Iwu, M. M., Igboko, O. A., Okeniyi, C. D., & Tempesta, M. S. (1990). Inhibition of the enzyme activity of aldosoreductase of some flavonoids by some flavonoids. Journal of Pharmacy and Pharmacology, 42, 290–292.

    Article  CAS  Google Scholar 

  36. Diallo, D., Sogn, C., Samake, F. B., Paulsen, B. S., Michaelsen, T. E., & Keita, A. (2002). Wound healing plants in Mali, the Bamako region. An ethnobotanical survey and complement fixation of water extracts from selected plants. Pharmaceutical Biology, 40, 117–128.

    Article  Google Scholar 

  37. Adamu, H. M., Abayeh, O. J., Agho, M. O., Abdullahi, A. L., Uba, A., Dukku, U., & Wufem, B. M. (2005). An ethnobotanical survey of Bauchi State herbal plants and their antimicrobial activity. Journal of Ethnopharmacology, 99, 1–4.

    Article  Google Scholar 

  38. Parashar, U. K., Saxena, P. S., & Srivastava, A. (2009). Bioinspired synthesis of silver nanoparticles. Dig Journal Nanomaterials Biostruct, 4, 159–166.

    Google Scholar 

  39. Kumar, V., & Yadav, S. K. (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 84, 151–157.

    Article  CAS  Google Scholar 

  40. Chudasama, B., Vala, A., Andhariya, N., Mehta, R., & Upadhyay, R. (2009). Enhanced antibacterial activity of bifunctional Fe3O4–Ag core–shell nanostructures. Nanoparticle Research, 2, 955–965.

    CAS  Google Scholar 

  41. Jose, L. E., Justin, L. B., Jose, R. M., Alejandra, C. B., Xiaoxia, G., Humberto, H. L., & Miguel, J. (2005). Interaction of silver nanoparticles with HIV-1. Journal Nanobiotechnology, 3, 6.

    Article  Google Scholar 

  42. Furno, F., Morley, K. S., Wong, B., Sharp, B. L., Arnold, P. L., Howdle, S. M., et al. (2004). Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection. Journal of Antimicrobial Chemotherapy, 54, 1019–1024.

    Article  CAS  Google Scholar 

  43. Abuskhuna, S., Briody, J., McCann, M., Devereux, M., Kavanagh, K., Fontecha, J. B., et al. (2004). Synthesis, structure and anti-fungal activity of dimeric Ag(I) complexes containing bis-imidasole ligands. Polyhedron, 23, 1249–1255.

    Article  CAS  Google Scholar 

  44. Hamouda, T., Myc, A., Donovan, B., Shih, A., Reuter, J. D., & Baker, J. R., Jr. (2000). A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiology Research, 156, 1–7.

    Article  Google Scholar 

  45. Zhao, G., & Stevens, S. E., Jr. (1998). Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals, 11, 27–32.

    Article  CAS  Google Scholar 

  46. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.

    Article  CAS  Google Scholar 

  47. Danilczuk, M., Lund, A., Saldo, J., Yamada, H., & Michalik, J. (2006). Conduction electron spin resonance of small silver particles. Spectrochimaca Acta Part A, 63, 189–191.

    Article  CAS  Google Scholar 

  48. Amro, N. A., Kotra, L. P., Wadu-Mesthrige, K., Bulychev, A., Mobashery, S., & Liu, G. (2000). High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: Structural basis for permeability. Langmuir, 16, 2789–2796.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. Murali Sastry and Dr. Sumant Phadtare, TATA Chemicals Ltd., Pune, for their kind help in nanoparticle analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satish V. Patil or Bipinchandra K. Salunke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

(JPEG 37 kb)

ESM. 2

(PDF 64 kb)

ESM. 3

(PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, S.V., Borase, H.P., Patil, C.D. et al. Biosynthesis of Silver Nanoparticles Using Latex from Few Euphorbian Plants and Their Antimicrobial Potential. Appl Biochem Biotechnol 167, 776–790 (2012). https://doi.org/10.1007/s12010-012-9710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9710-z

Keywords

Navigation