Skip to main content
Log in

Rheological Behavior and Non-enzymatic Degradation of a Sulfated Galactan from Halymenia durvillei (Halymeniales, Rhodophyta)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The rheological behavior of a sulfated galactan extracted from Halymenia durvillei, a red seaweed collected in the coastal waters of a small island of Madagascar (Nosy-be in Indian Ocean), was investigated in dilute and semi-dilute solutions. In dilute solution with NaCl at 0.3 M, the polysaccharide adopted a coil conformation whereas, at higher concentrations, the polymer had the behavior of shear-thinning fluid, typical of polymer with high molar mass or semi-rigid conformation. Degradations of this lambda carrageenan-like, using radical depolymerization, and high-pressure homogenization led to several samples of various and controlled molar masses. The measure of their intrinsic viscosities permitted the determination of the relationship of Mark–Houwink–Sakurada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rinaudo, M. (2007). Seaweed polysaccharides. In: J. P. Kalmerling (Ed.), Comprehensive glycoscience from chemistry to systems biology, 2, 691–735

  2. Witvrouw, M., & De Clercq, E. (1997). Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. General Pharmaceuticals, 29, 497–511.

    Article  CAS  Google Scholar 

  3. Knutsen, S., Myslabodski, D., Larsen, B., & Usov, A. (1994). A modified system of nomenclature for red algal galactans. Botanica Marina, 37, 163–169.

    Article  CAS  Google Scholar 

  4. Rees, D. A. (1969). Structure conformation and mechanism in formation of polysaccharide gels and networks. Advances in Carbohydrate Chemistry and Biochemistry, 24, 267–332.

    Article  CAS  Google Scholar 

  5. Hirase, S., Araki, C., & Watanabe, K. (1967). Component sugars of the polysaccharide of the red seaweed Grateloupia elliptica. Bulletin of the Chemical Society of Japan, 40, 1445–1448.

    Article  CAS  Google Scholar 

  6. Farrant, A. J., Nuun, J. R., & Parolis, H. (1972). Sulphated polysaccahrides of the Grateloupiaceae family; Part VII. Investigation of the acetolysis products of a partially desulphated sample of polysaccharide of Pachymenia Carnosa. Carbohydrate Research, 25, 283–292.

    Article  CAS  Google Scholar 

  7. Miller, I. J., Falshaw, R., & Furneaux, R. H. (1995). Structural analysis of the polysaccharide from Pachymenia lusoria (Cryptonemiaceae, Rhodophyta). Carbohydrate Research, 268, 219–232.

    Article  CAS  Google Scholar 

  8. Fenoradosoa, T. A., Delattre, C., Laroche, C., Wadouachi, A., Dulong, V., Picton, L., Andriamadio, P., & Michaud, P. (2009). Highly sulphated galactan from halymenia durvillei (Halymeniales, Rhodophyta), a red seaweed of Madagascar marine coast. International Journal of Biological Macromolecules, 45, 140–145.

    Article  CAS  Google Scholar 

  9. Volpi, N., Mascellani, G., & Bianchini, P. (1992). Low molecular weight heparins (5kDa) and oligoheparins (2kDa) Produced by gel permeation enrichment or radical process: comparison of structures and physicochemical and biological properties. Analytical Biochemistry, 200, 100–107.

    Article  CAS  Google Scholar 

  10. Nardella, A., Chaubet, F., Boisson-Vidal, C., Blondin, C., Durand, P., & Jozefonvicz, J. (1996). Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from brown seaweed Ascophyllum nodosum. Carbohydrate Research, 289, 201–208.

    Article  CAS  Google Scholar 

  11. Yang, Z., Li, J. P., & Guan, H. S. (2004). Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydrate Polymers, 58, 115–121.

    Article  CAS  Google Scholar 

  12. Miller, J. G., & Fry, S. C. (2001). Characteristics of xyloglucan after attack by hydroxyl radials. Carbohydrate Research, 332, 389–403.

    Article  CAS  Google Scholar 

  13. Viebke, C., Borgstro, J., & Piculell, L. (1995). Characterization of к- and τ-carrageenan coils and helices by MALLS/GPC. Carbohydrate Polymers, 27, 145–154.

    Article  CAS  Google Scholar 

  14. Williams, P. A., & Phillips, G. O. (2006). Gums and stabilizers for the food industry (volume 13) (p. 495). UK: Royal Society of Chemistry.

    Google Scholar 

  15. Slootmaekers, D., van Dijk, J. A. P. P., Varkevisser, F. A., van Treslong, C. J. B., & Reynaers, H. (1991). Molecular characterisation of kappa- and lambda-carrageenan by gel permeation chromatography, light scattering, sedimentation analysis and osmometry. Biophysical Chemistry, 41, 51–59.

    Article  CAS  Google Scholar 

  16. Zhou, G., Sun, Y. P., Xin, H., Zhang, Y., Li, Z., & Xu, Z. (2004). In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from chondrus ocellatus. Pharmacological Research, 50, 47–53.

    Article  CAS  Google Scholar 

  17. Zhou, G., Xin, H., Sheng, W., Sun, Y., Li, Z., & Xu, Z. (2005). In vivo growth-inhibition of S180 tumor by mixture of 5-Fu and low molecular carrageenans from C. ocellatus. Pharmacological Research, 51, 153–157.

    Article  CAS  Google Scholar 

  18. Guibet, M., Colin, S., Barbeyron, T., Genicot, S., Kloareg, B., Michel, G., & Helbert, W. (2007). Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: A new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases. Biochemical Journal, 404, 105–114.

    Article  CAS  Google Scholar 

  19. Nilsson, S., & Piculell, L. (1989). Helix-coil transitions of ionic polysaccharides analysed within the Poisson-Boltzmann cell model. 2. Effects of salt concentration on the thermal transition. Macromolecules, 22, 3011–3017.

    Article  CAS  Google Scholar 

  20. Piculell, L. (1991). Phase separation in aqueous mixtures of similarly charged polyelectrolytes. Polymer Communications, 32, 158–160.

    CAS  Google Scholar 

  21. Piculell, L., Nilsson, S., & Strom, P. (1989). On the specificity of the binding of cations to carrageenans: Counterion N.M.R. spectroscopy in mixed carrageenan systems. Carbohydrate Research, 188, 121–135.

    Article  CAS  Google Scholar 

  22. Utracki, L., & Shima, R. (1963). Corresponding state relations for the viscosity of moderately concentrated polymer solutions. Journal of Polymer Science, 1, 1089–1098.

    CAS  Google Scholar 

  23. Villay, A., Lakkis de Filippis, F., Picton, L., Le Cerf, D., Vial, C., & Michaud, P. (2012). Comparison of polysaccharide degradations by dynamic high pressure homogenisation. Food Hydrocolloids, 27, 278–286.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Michaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenoradosoa, T.A., Laroche, C., Delattre, C. et al. Rheological Behavior and Non-enzymatic Degradation of a Sulfated Galactan from Halymenia durvillei (Halymeniales, Rhodophyta). Appl Biochem Biotechnol 167, 1303–1313 (2012). https://doi.org/10.1007/s12010-012-9605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9605-z

Keywords

Navigation