Skip to main content
Log in

Synthesis of Pure meso-2,3-Butanediol from Crude Glycerol Using an Engineered Metabolic Pathway in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

meso-2,3-Butanediol (meso-2,3-BDO) is essential for the synthesis of various economically valuable biosynthetic products; however, the production of meso-2,3-BDO from expensive carbon sources is an obstacle for industrial applications. In this study, genes involved in the synthesis of 2,3-BDO in Klebsiella pneumoniae were identified and used to genetically modify Escherichia coli for meso-2,3-BDO production. Two 2,3-BDO biosynthesis genes—budA, encoding acetolactate, and meso-budC, encoding meso-SADH—from K. pneumoniae were cloned into the pUC18 plasmid and introduced into E. coli. In 2 l batch culture, the SGSB03 E. coli strain yielded meso-2,3-BDO at 0.31 g/gglucose (with a maximum of 15.7 g/lculture after 48 h) and 0.21 g/gcrude glycerol (with a maximum of 6.9 g/lculture after 48 h). Batch cultures were grown under optimized conditions (aerobic, 6% carbon source, 37 °C, and initial pH 7). To find the optimal culture conditions for meso-2,3-BDO production, we evaluated the enzyme activity of meso-SADH and the whole cell conversion yield (meso-2,3-BDO/acetoin) of the E. coli SGSB02, which contains pSB02. meso-SADH showed high enzyme activity at 30–37 °C and pH 7 (30.5–41.5 U/mg of protein), and the conversion yield of SGSB02 E. coli was highest at 37–42 °C and a pH of 7 (0.25–0.28 g meso-2,3-BDO/gacetoin).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garg, S. K., & Jain, A. (1995). Fermentative production of 2,3-butanediol. A review. Bioresource Technology, 51, 103–109.

    Article  CAS  Google Scholar 

  2. Kaloyan, P., & Petrova, P. (2009). High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Applied Microbiology and Biotechnology, 84, 659–665.

    Article  Google Scholar 

  3. Sadahar, U. U., Okajima, Y., Mimura, A., Kanai, H., Kobayashi, T., & Kudo, T. (1997). Sequence analysis of the gene for and characterization of d-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumonia expressed in Escherichia coli. Journal of Fermentation and Bioengineering, 83(1), 32–37.

    Article  Google Scholar 

  4. Yan, Y., Lee, C.-C., & Liao, J. C. (2009). Enantioselective synthesis of pure (R, R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Organic & Biomolecular Chemistry, 7, 3914–53917.

    Article  CAS  Google Scholar 

  5. Syu, M. J. (2001). Biological production of 2,3-butanediol. a review. Applied Microbiology and Biotechnology, 55, 10–18.

    Article  CAS  Google Scholar 

  6. Blomqvist, K., Nicola, M., Lehtovaara, P., Suihko, M.-L., Airaksien, U., Strabe, K. B., Knowles, J. C., & Penttila, M. E. (1993). Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. Journal of Bacteriology, 175(5), 1392–1404.

    CAS  Google Scholar 

  7. Xiao-Jun, J., Huang, H., Zhu, J.-G., Ren, Lu-Jing, Nie, Z.-K., Jun, Du, & Li, S. (2009). Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Applied Microbiology and Biotechnology, 85(6), 1751–1758.

    Google Scholar 

  8. Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64, 137–145.

    Article  CAS  Google Scholar 

  9. Ledingham, G. A., & Neish, A. C. (1954). Fermentative production of 2,3-butanediol. In L. A. Underkofler & R. J. Hickey (Eds.), Industrial fermentations (Vol. 2, pp. 27–93). New York: Chemical Publishing.

    Google Scholar 

  10. Xiao, Z., & Xu, P. (2007). Acetoin metabolism in bacteria. Critical Reviews in Microbiology, 33(2), 127–140.

    Article  CAS  Google Scholar 

  11. Sadahar, U. U., Okajima, Y., Mimura, A., Kanai, H., Kobayashi, T., & Kudo, T. (1997). Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. Journal of Fermentation and Bioengineering, 84(3), 185–189.

    Article  Google Scholar 

  12. Wayne, L. N. (2008). The Bacillus subtilis ydjL (BDOhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Applied and Environmental Microbiology, 74(22), 6832–6838.

    Article  Google Scholar 

  13. Celinska, E., & Grajek, W. (2009). Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnology Advances, 27, 715–725.

    Article  CAS  Google Scholar 

  14. Sadahar, U. U., Masuda, H., & Muraki, H. (1983). Laboratory-scale production of 2,3-butanediol isomers (d(-), l(+), and meso) by bacterial fermentations. Journal of Fermentation and Bioengineering, 61, 253–259.

    Google Scholar 

  15. Saha, B. C., & Bothast, R. J. (1999). Production of 2,3-butanediol by newly isolated Enterobacter cloacae. Applied Microbiology and Biotechnology, 52, 321–326.

    Article  CAS  Google Scholar 

  16. Yang, G., Tian, J., & Li, J. (2007). Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Applied Microbiology and Biotechnology, 73, 1017–1024.

    Article  CAS  Google Scholar 

  17. Paulo da Silva, G., Mack, M., & Contiero, J. (2009). Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27, 30–39.

    Article  CAS  Google Scholar 

  18. Li, L., Wang, Y., Zhang, L., Ma, C., Wang, A., Tao, F., & Xu, P. (2011). Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresource Technology. doi:10.1016/j.biortech.2011.08.097.

  19. Ui, S., Takusangawa, Y., Sato, T., Ohtsuki, T., Mimura, A., Ohkuma, M., & Kudo, T. (2004). Production of l-2,3-butanediol by a new pathway constructed in Escherichia coli. Letters in Applied Microbiology, 39, 533–537.

    Article  CAS  Google Scholar 

  20. Li, Z., Jian, J., Wei, X., Shen, X., & Chen, G. (2010). Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition. Applied Microbiology and Biotechnology, 87, 2001–2009.

    Article  CAS  Google Scholar 

  21. Zhu, Y., Eiteman, M. A., Lee, S. A., & Altman, E. (2010). Conversion of glycerol to pyruvate by Escherichia coli using acetate- and acetate/glucose-limited fed-batch processes. Journal of Industrial Microbiology and Biotechnology, 37, 307–312.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the R&D Program of Ministry of Knowledge Economy (MKE)/KEIT (no. 10035578, Development of 2,3-BDO and derivative production technology for C-Zero bio-platform industry). This work was supported by the Graduate School of Specialization for Biotechnology Program of the MKE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Kim, B., Park, K. et al. Synthesis of Pure meso-2,3-Butanediol from Crude Glycerol Using an Engineered Metabolic Pathway in Escherichia coli . Appl Biochem Biotechnol 166, 1801–1813 (2012). https://doi.org/10.1007/s12010-012-9593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9593-z

Keywords

Navigation