Skip to main content
Log in

Multienzymatic Sucrose Conversion into Fructose and Gluconic Acid through Fed-Batch and Membrane-Continuous Processes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Multienzymatic conversion of sucrose into fructose and gluconic acid was studied through fed-batch and continuous (in a membrane reactor) processes. The law of substrate addition (sucrose or glucose) for the fed-batch process which led to a yield superior to 80% was the decreasing linear type, whose feeding rate (ϕ; L/h) was calculated through the equation: ϕ = ϕo − k.t, where ϕo (initial feeding rate, L/h), k (linear addition constant, L/h 2), and t (reaction time, h). In the continuous process, the yield of conversion of sucrose (Y) was superior to 70% under the following conditions: dilution rate = 0.33 h−1, total duration of 15 h, pH 5.0, 37 °C and initial sucrose concentration of 64 g/L (Y = 92%), 100 g/L (Y = 83%), or 150 g/L (Y = 76%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goulas, A. K., Cooper, J. M., Grandison, A. S., & Rastall, R. A. (2004). Biotechnology and Bioengineering, 88, 778–779.

    Article  CAS  Google Scholar 

  2. Kennedy, J. F., Pimentel, M. C. B., Melo, E. H. M., & Lima-filho, J. L. (2007). Journal of the Science of Food and Agriculture, 87, 2266–2271.

    Article  CAS  Google Scholar 

  3. Vaz, A. J., Takei, K., & Bueno, E. C. (2007). Immunoassays: fundamentals and applications (Guanabara Koogan, ed). Rio de Janeiro, 67.

  4. Andreotti, D. Z., Tomotani, E. J., & Vitolo, M. (2010). European Biomass Conference and Exhibition from Research to Industry and Markets 18, 1367–1370. Lyon, France.

  5. Tomotani, E. J., Vitolo, M., Felipe, M. G. A., & Arruda, P. V. (2010). International Congress on Biocatalysis, 5, from 29/08 to 02/09/2010, Hamburg, Germany. Biocat, 2010, 103–104.

    Google Scholar 

  6. Panke, S., & Wubbolts, M. G. (2005). Current Opin Chem Biol, 9, 188–194.

    Article  CAS  Google Scholar 

  7. Sheu, D. C., Lio, P. J., Chen, S. T., Lin, C. T., & Duan, K. (2001). Biotechnology Letters, 23, 1499–1503.

    Article  CAS  Google Scholar 

  8. Tomotani, E. J., & Vitolo, M. (2010). Brazilian. Journal of Pharmaceutical Sciences, 46(3), 571–577.

    CAS  Google Scholar 

  9. Neves, L. C. M., & Vitolo, M. (2007). Applied Biochemistry and Biotechnology, 136, 161–170.

    Article  Google Scholar 

  10. Tomotani, E. J., & Vitolo, M. (2007). Enzyme and Microbial Technology, 40, 1020–1025.

    Article  CAS  Google Scholar 

  11. Tomotani, E. J., Neves, L. C. M., & Vitolo, M. (2005). Applied Biochemistry and Biotechnology, 121, 149–162.

    Article  Google Scholar 

  12. Sengupta, S., & Modak, J. M. (2001). Chemical Engineering Science, 56, 3315–3325.

    Article  CAS  Google Scholar 

  13. Pérez-terrazas, J. E., Ibarra-junquera, V., & Rosu, H. C. (2008). Korean J Chemical Engineer, 25(3), 461–465.

    Article  Google Scholar 

  14. Tomotani, E. J., & Vitolo, M. (2004). Applied Biochemistry and Biotechnology, 113, 145–159.

    Article  Google Scholar 

  15. Taraboulsi, F. A., Jr., & Vitolo, M. (2010). Analytica, 8(47), 86–93.

    Google Scholar 

  16. Da Silva, A. R. (2010). Dissertation. Sao Paulo, Brazil: University of São Paulo, School of Pharmaceutical Sciences.

    Google Scholar 

  17. Mansour, E. H., & Dawoud, M. (2003). Journal of the Science of Food and Agriculture, 83, 446–450.

    Article  CAS  Google Scholar 

  18. Arruda, L. M., & Vitolo, M. (1999). Applied Biochemistry and Biotechnology, 8, 23–33.

    Article  Google Scholar 

  19. Raba, J., & Mottola, H. A. (1995). Glucose oxidase as an analytical reagent. Critical Reviews in Analytical Chemistry, 25(1), 1–42.

    Article  CAS  Google Scholar 

  20. Fogarty, W. M., & Kelly, C. T. (1990). Microbial enzymes and biotechnology (2nd ed.). London: Elsevier Applied Science.

    Book  Google Scholar 

  21. Wigley, R. C. (1996). Cheese and Whey. In T. Godfrey & S. West (Eds.), Industrial Enzymology (2nd ed., pp. 135–154). London: MacMillan LTDA.

    Google Scholar 

  22. Echegaray, O. F., Carvalho, J. C. M., Fernandes, A. N. R., Sato, S., Aquarone, E., & Vitolo, M. (2000). Biomass and Bioenergy, 19, 39–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial grant from CNPq (Conselho Nacional de Pesquisa) and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and thank Philip Barsanti for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Antoine Taraboulsi Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taraboulsi, F.A., Tomotani, E.J. & Vitolo, M. Multienzymatic Sucrose Conversion into Fructose and Gluconic Acid through Fed-Batch and Membrane-Continuous Processes. Appl Biochem Biotechnol 165, 1708–1724 (2011). https://doi.org/10.1007/s12010-011-9389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9389-6

Keywords

Navigation