Skip to main content
Log in

A Systematic Petri Net Approach for Multiple-Scale Modeling and Simulation of Biochemical Processes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A method to exploit hybrid Petri nets for modeling and simulating biochemical processes in a systematic way was introduced. Both molecular biology and biochemical engineering aspects are manipulated. With discrete and continuous elements, the hybrid Petri nets can easily handle biochemical factors such as metabolites concentration and kinetic behaviors. It is possible to translate both molecular biological behavior and biochemical processes workflow into hybrid Petri nets in a natural manner. As an example, penicillin production bioprocess is modeled to illustrate the concepts of the methodology. Results of the dynamic of production parameters in the bioprocess were simulated and observed diagrammatically. Current problems and post-genomic perspectives were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

F in :

Combined inlet flow rate of all additions (dm3 h−1)

F out :

Outlet flow rate of evaporated water (dm3 h−1)

G :

Glucose concentration (g dm−3)

G in :

Glucose concentration in the feed (g dm−3)

K d :

Autolysis rate constant (h−1)

K h :

Penicillin hydrolysis rate constant (h−1)

K p :

Product saturation constant (g dm−3)

K s :

Substrate saturation constant (g dm−3)

K x :

Growth saturation constant (g g-DW−1)

N :

Soluble organic nitrogen concentration (g dm−3)

P :

Penicillin concentration (as potassium salt) (g-PenGK dm−3)

S :

Substrate concentration (g dm−3)

t :

Time (h)

V :

Culture broth volume (dm3)

X :

Biomass concentration (g-DW dm−3)

Y x/s :

Substrate to biomass yield (g-DW g−1)

Y p/s :

Substrate to penicillin yield (g-PenGK g−1)

ξ :

Specific substrate consumption rate for maintenance (g g-DW−1 h−1)

ξ max :

Maximum specific substrate consumption rate for maintenance (g g-DW−1 h−1)

μ :

Specific biomass growth rate (h−1)

μ max :

Maximum specific biomass growth rate (h−1)

π :

Specific penicillin production rate (g g-DW−1 h−1)

π max :

Maximum specific penicillin production rate (g g-DW−1 h−1)

σ :

Specific substrate consumption rate (g g-DW−1 h−1)

References

  1. Fell, D. A. (1992). Metabolic control analysis: a survey of its theoretical and experimental development. The Biochemical Journal, 286, 313–330.

    CAS  Google Scholar 

  2. Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature Biotechnology, 28, 245–248.

    Article  CAS  Google Scholar 

  3. Trinh, C. T., Wlaschin, A., & Srienc, F. (2009). Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Applied Microbiology and Biotechnology, 81, 813–826.

    Article  CAS  Google Scholar 

  4. Riid, A., & Rüstern, E. (1999). Fuzzy modeling and control of fed-batch fermentation. In Computational intelligence and applications (pp. 283–291). New York: Physica Verlag.

    Google Scholar 

  5. Chaudhuri, B., & Modak, J. M. (1998). Optimization of fed-batch bioreactor using neural network model. Bioprocess Engineering, 19, 71–79.

    Article  CAS  Google Scholar 

  6. Roubos, J. A., Krabben, P., Setnes, M., et al. (1999). Hybrid model development for fed-batch bioprocesses; combining physical equations with the metabolic network and black-box kinetics. 6th Workshop on fuzzy systems, September 8–9, Brunel University, Uxbridge, 231–239.

  7. Petri, C. A. (1962). Kommunikation mit Automaten, Dissertation, Institut für Instrumentelle Mathematik, Schriften des IIM Nr. 2, Bonn.

  8. Jensen, K. (1997). A brief introduction to coloured Petri Nets. Lecture Notes in Computer Science, 1217, 203–208.

    Article  Google Scholar 

  9. Jensen, K. (1997). Coloured PETRI nets: basic concepts, analysis methods and practical use, vol. 3, Practical use. Monographs in theoretical computer science. Berlin: Springer-Verlag.

    Google Scholar 

  10. Gabriel, E., & Carrillo, U. (1999). Optimal control of fermentation processes. PhD Thesis, City University, London.

  11. Riid, A. (2002). Transparent fuzzy systems: Modeling and control. PhD Thesis, Tallinn Technical University, Tallinn.

  12. Ghosal, S., & Srivastava, A. K. (2009). Fundamentals of bioanalytical techniques and instrumentation. New Delhi: Eastern Economy Edition.

    Google Scholar 

  13. Jensen, K. (1992). Coloured Petri nets. Basic concepts, analysis methods and practical use, vol. 1, Basic concepts. Monographs in theoretical computer science. Berlin: Springer-Verlag.

    Google Scholar 

  14. Goss, P. J., & Peccoud, J. (1998). Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 6750–6755.

    Article  CAS  Google Scholar 

  15. Hofestädt, R., & Thelen, S. (1998). Quantitative modeling of biochemical networks. In Silico Biology, 1(1), S.39–53.

    Google Scholar 

  16. Heiner, M., Richter, R., Rohr, C., et al. (2008). Snoopy—a tool to design and execute graph-based formalisms. Petri Net Newsletter, 74, 8–22.

    Google Scholar 

  17. Nagasaki, M., Doi, A., Matsuno, H., et al. (2004). Genomic object net: a platform for modeling and simulating biopathways. Applied Bioinformatics, 2, 181–184.

    Google Scholar 

  18. Drath, R. (1997). A mathematical approach to describing a class of hybrid systems. IEEE workshop on parallel and distributed real time systems, April 1–3, Geneva, Switzerland, 228–232.

  19. Drath, R. (1998). Hybrid object nets: an object oriented concept for modelling complex hybrid systems. 3rd International Conference on Automation of Mixed Processes, March 19–20, Reims, France. 437–422.

  20. Kohn, M. C., & Letzkus, W. (1982). A graph-theoretical analysis of metabolic regulation. Journal of Theoretical Biology, 100, 293–304.

    Article  Google Scholar 

  21. Hofestädt, R. (2003). Special issue on “Petri nets for metabolic networks”. In Silico Biology, vol. 03: 0028.

  22. Wingender, E. (2010). Special issue on “Petri net application in molecular biology”. In Silico Biology, vol. 10: 0001.

  23. Zhou, M., & Li, Z. (2010). Special issue on “Petri nets for system control and automation”. Asian Journal of Control, 12(3), 237–442.

    Article  Google Scholar 

  24. Chaouiya, C. (2007). Petri net modelling of biological networks. Briefings in Bioinformatics, 8(4), 210–219.

    Article  CAS  Google Scholar 

  25. Daubas B., Pages A., & Pingaud H. (1994). Combined simulation of hybrid processes. In: 1994 IEEE International Conference on “Humans, Information and Technology”.

  26. Shuler, M. L., & Kargi, F. (1992). Bioprocess engineering (Basic concepts). Englewood Cliff: PTR Prentice Hall.

    Google Scholar 

  27. Scragg, A. H. (1991). Bioreators in biotechnology: a practical approach, Ellis Hrwood.

  28. Menezes, J. C., Alves, S. S., Lemos, J. M., et al. (1994). Mathematical modelling of industrial pilot-plant penicillin-G fed-batch fermentations. Journal of Chemical Technology & Biotechnology, 61, 123–138.

    Article  CAS  Google Scholar 

  29. Chen, M., & Hofestädt, R. (2003). Quantitative petri net model of gene regulated metabolic networks in the cell. In Silico Biology, 3(3), 347–365.

    CAS  Google Scholar 

  30. Webber, K. (2005). FDA update: process analytical technology for biotechnology products. PAT, 2(4), 12–14.

    CAS  Google Scholar 

  31. Righini, G. (1993). Modular Petri nets for simulation of flexible production systems. International Journal of Production Research, 31(10), 2463–2477.

    Article  Google Scholar 

  32. Fehling, R. (1993). A concept of hierarchical petri nets with building blocks. Lecture Notes in Computer Science, 674, 148–168.

    Google Scholar 

  33. Little, T. D. C., & Ghafoor, A. (1990). Synchronization and storage models for multimedia objects. IEEE Journal on Selected Areas in Communications, 8(3), 413–427.

    Article  Google Scholar 

  34. Paliwal, S. K., Nadler, T. K., & Regnier, F. E. (1993). Rapid process monitoring in biotechnology. Tibtech, 11, 95–101.

    CAS  Google Scholar 

  35. Alford, J. S. (2006). Bioprocess control: advances and challenges. Computers & Chemical Engineering, 30(10), 1464–1475.

    Article  CAS  Google Scholar 

  36. Arnold, S. A., Harvey, L. M., McNeil, B., et al. (2002). Employing nearinfrared spectroscopic methods of analysis for fermentation monitoring and control. Part 1, Method development. Biophotonics International, 13, 26–34.

    Google Scholar 

  37. van den Berg, M. A., Albang, R., Albermann, K., et al. (2008). Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nature Biotechnology, 26(10), 1161–1168.

    Article  CAS  Google Scholar 

  38. Zhang, S., Chu, J., & Zhuang, Y. (2004). A multi-scale study of industrial fermentation processes and their optimization. Advances in Biochemical Engineering/Biotechnology, 87, 97–150.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was originally prepared in 2001 and renewed recently. Authors are grateful for the support from the International S&T Cooperation Program of China (2009DFA32030), the BMBF International Cooperation Program, Germany (CHN 08/001), and the Program for New Century Excellent Talents in University of China (NCET-07-0740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Hu, M. & Hofestädt, R. A Systematic Petri Net Approach for Multiple-Scale Modeling and Simulation of Biochemical Processes. Appl Biochem Biotechnol 164, 338–352 (2011). https://doi.org/10.1007/s12010-010-9138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9138-2

Keywords

Navigation