Skip to main content
Log in

Characterization of a Defined Cellulolytic and Xylanolytic Bacterial Consortium for Bioprocessing of Cellulose and Hemicelluloses

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Diminishing fossil fuel reserve and increasing cost of fossil hydrocarbon products have rekindled worldwide effort on conversion of lignocellloloses (plant biomass) to renewable fuel. Inedible plant materials such as grass, agricultural, and logging residues are abundant renewable natural resources that can be converted to biofuel. In an effort to mimic natural cellulolytic–xylanolytic microbial community in bioprocessing of lignocelluloses, we enriched cellulolytic–xylanolytic microorganisms, purified 19 monocultures and evaluated their cellulolytic–xylanolytic potential. Five selected isolates (DB1, DB2, DB7, DB8, and DB13) were used to compose a defined consortium and characterized by 16S ribosomal RNA gene sequence analysis. Nucleotide sequence blast analysis revealed that DB1, DB2, DB7, DB8, and DB13 were respectively similar to Pseudoxanthomonas byssovorax (99%), Microbacterium oxydans (99%), Bacillus sp. (99%), Ochrobactrum anthropi (98%), and Klebsiella trevisanii (99%). The isolates produced an array of cellulolytic–xylanolytic enzymes (filter paper cellulase, β-glucosidase, xylanase, and β-xylosidase), and significant activities were recorded in 30 min. Isolates DB1 and DB2 displayed the highest filter paper cellulase: 27.83 and 31.22 U mg−1, respectively. The highest β-glucosidase activity (18.07 U mg−1) was detected in the culture of isolate DB1. Isolate DB2 produced the highest xylanase activity (103.05 U mg−1), while the highest β-xylosidase activity (7.72 U mg−1) was observed with DB13. Use of microbial consortium in bioprocessing of lignocelluloses could reduce problems such as incomplete synergistic enzymes, end-product inhibition, adsorption, and requirement for high amounts of enzymes in direct use of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Octave, S., & Thomas, D. (2009). Biorefinery: toward an industrial metabolism. Biochimie, 91, 659–664.

    Article  CAS  Google Scholar 

  2. Wilson, D. B. (2009). Current Opinion in Biotechnology, 20, 1–5.

    Article  Google Scholar 

  3. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., et al. (2006). Science, 311, 484–489.

    Article  CAS  Google Scholar 

  4. Rajoka, M. I., Khan, S. H., Jabbar, M. A., Awan, M. S., & Hashmi, A. S. (2006). Bioresource Technolology, 97, 1934–1941.

    Article  CAS  Google Scholar 

  5. Wong, S., Kasapis, S., & Tan, Y. M. (2009). Carbohydrate Polymers, 77, 280–287.

    Article  CAS  Google Scholar 

  6. Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). Angewandte Chemie. International Edition, 44, 3358–3393.

    Article  CAS  Google Scholar 

  7. Bayer, E. A., Lamed, R., & Himmel, M. E. (2007). Current Opinion in Biotechnology, 18, 237–245.

    Article  CAS  Google Scholar 

  8. Yao, Q., Sun, T. T., Liu, W. F., & Chen, G. J. (2008). Bioscience, Biotechnology, and Biochemistry, 72, 2799–2805.

    Article  CAS  Google Scholar 

  9. Adsul, M. G., Bastawde, K. B., Varma, A. J., & Gokhale, D. V. (2007). Bioresource Technology, 98, 1467–1473.

    Article  CAS  Google Scholar 

  10. Kovacs, K., Szakacs, G., & Zacchi, G. (2009). Bioresource Technology, 100, 1350–1357.

    Article  CAS  Google Scholar 

  11. Romanowska, I., Polak, J., & Bielecki, S. (2006). Applied Microbiology and Biotechnology, 69, 665–671.

    Article  CAS  Google Scholar 

  12. Rasmussen, L. E., Sorensen, H. R., Vind, J., & Vikso-Nielsen, A. (2006). Biotechnology and Bioengineering, 94, 869–876.

    Article  CAS  Google Scholar 

  13. Stricker, A. R., Mach, R. L., & de Graaff, L. H. (2008). Applied Microbiology and Biotechnology, 78, 211–220.

    Article  CAS  Google Scholar 

  14. Saratale, G. D., Saratale, R. G., Lo, Y. C., & Chang, J. S. (2010). Biotechnology Progress, 26, 406–416.

    CAS  Google Scholar 

  15. Kim, B., Lee, B., Lee, Y., Jin, I., Chung, C., & Lee, J. (2009). Enzyme and Microbial Technology, 44, 411–416.

    Article  CAS  Google Scholar 

  16. Lo, Y.-C., Saratale, G. D., Chen, W.-M., Bai, M.-D., & Chang, J.-S. (2009). Enzyme and Microbial Technology, 44, 417–425.

    Article  CAS  Google Scholar 

  17. Yang, S., Wang, L., Yan, Q., Jiang, Z., & Li, L. (2009). Food Chemistry, 115, 1247–1252.

    Article  CAS  Google Scholar 

  18. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  19. Biely, P. (1985). Trend Biotechnol, 3, 286–289.

    Article  CAS  Google Scholar 

  20. Biely, P. (2003). In J. R. Whitaker, A. Voragen, & D. Wong (Eds.), Handbook of food enzymology (pp. 879–916). New York: Marcel Dekker.

    Google Scholar 

  21. Ryabovaa, O., Vršanskáa, M., Kanekob, S., van Zylc, W. H., & Bielya, P. (2009). FEBS Letters, 583, 1457–1462.

    Article  Google Scholar 

  22. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  23. Dutta, T., Sengupta, R., Sahoo, R., Sinha Ray, S., Bhattacharjee, A., & Ghosh, S. (2007). Letters in Applied Microbiology, 44, 206–211.

    Article  CAS  Google Scholar 

  24. Rapp, P., & Wagner, F. (1986). Applied and Environmental Microbiology, 51, 746–752.

    CAS  Google Scholar 

  25. Wyman, C. E. (2007). Trends in Biotechnology, 25, 153–157.

    Article  CAS  Google Scholar 

  26. Yang, B., & Wyman, C. E. (2008). Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  27. Jensen, P. D., Hardin, M. T., & Clarke, W. P. (2009). Bioresource Technology, 100, 5219–5225.

    Article  CAS  Google Scholar 

  28. Gregg, D. J., & Saddler, J. N. (1996). Biotechnology and Bioengineering, 51, 375–383.

    Article  CAS  Google Scholar 

  29. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  30. Kumar, R., & Wyman, C. E. (2009). Biotechnology and Bioengineering, 102, 1544–1557.

    Article  CAS  Google Scholar 

  31. Kumar, R., & Wyman, C. E. (2009). Bioresource Technology, 100, 4203–4213.

    Article  CAS  Google Scholar 

  32. Merino, S. T., & Cherry, J. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 95–120.

    Article  CAS  Google Scholar 

  33. Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Biotechnology Progress, 3, 1130–1137.

    Google Scholar 

  34. Shi, J., Sharma-Shivappa, R. R., & Chinn, M. S. (2009). Bioresource Technology, 100, 4388–4395.

    Article  CAS  Google Scholar 

  35. Tanaka, H., Koike, K., Itakura, S., & Enoki, A. (2009). Enzyme and Microbial Technology, 45, 384–390.

    Article  CAS  Google Scholar 

  36. Xu, Q., Singh, A., & Himmel, M. E. (2009). Current Opinion in Biotechnology, 20, 1–8.

    Article  Google Scholar 

  37. Herman, D. C., & Frankenberger, W. T., Jr. (1999). Journal of Environmental Quality, 28, 1018–1024.

    Article  CAS  Google Scholar 

  38. Focht, D. D. (1994). In R. W. Weaver et al. (Eds.), Methods of soil analysis, Part 2—Microbiological and biochemical properties. Soil Science Society of America (Vol. 5, pp. 407–426). Madison: SSSA.

    Google Scholar 

  39. Decker, S. R., Adney, W. S., Jennings, E., Vinzant, T. B., & Himmel, M. E. (2003). Applied Biochemistry and Biotechnology, 107, 689–703.

    Article  Google Scholar 

  40. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  41. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  42. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Biotechnology Progress, 21, 816–822.

    Article  CAS  Google Scholar 

  43. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  44. Lane, D. J. (1991). In E. Stackebrand & M. Goodfellow (Eds.), Techniques in bacterial systematics (pp. 115–175). New York: Wiley.

    Google Scholar 

  45. Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). Journal of Computational Biology, 7, 203–214.

    Article  CAS  Google Scholar 

  46. Neefs, J. M., Van De Peer, Y., Hendriks, L., & De Wachter, R. (1990). Nucleic Acids Research, 18, 2237–2317.

    Article  CAS  Google Scholar 

  47. Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., et al. (2009). Nucleic Acids Research, 37, D141–D145.

    Article  CAS  Google Scholar 

  48. Ahamed, A., & Vermette, P. (2008). Biochemical Engineering Journal, 42, 41–46.

    Article  CAS  Google Scholar 

  49. Alam, M. Z., Fakhrul-Razi, A., Abd-Aziz, A., & Molla, A. H. (2003). Water, Air, and Soil Pollution, 149, 113–126.

    Article  CAS  Google Scholar 

  50. Gutierrez-Correa, M., Porial, L., Moreno, P., & Tengerdy, R. P. (1999). Bioresource Technology, 68, 173–178.

    Article  CAS  Google Scholar 

  51. Roughgarden, J., & Diamond, J. (1986). In J. Diamond & T. Case (Eds.), Community ecology (pp. 333–344). New York: Harper & Row.

    Google Scholar 

  52. Patel, I. B., & Vaughn, R. H. (1973). Applied Microbiology, 25, 62–69.

    CAS  Google Scholar 

  53. Eriksson, T., Karlsson, J., & Tjerneld, F. (2002). Applied Biochemistry and Biotechnology, 101, 41–60.

    Article  CAS  Google Scholar 

  54. Kumar, R., & Wyman, C. E. (2008). Enzyme and Microbial Technology, 42, 426–433.

    Article  CAS  Google Scholar 

  55. Kuo, C. H., & Lee, C. K. (2009). Carbohydrate Polymers, 77, 41–46.

    Article  CAS  Google Scholar 

  56. Howell, J. A., & Stuck, J. D. (1975). Biotechnology and Bioengineering, 17, 873–893.

    Article  CAS  Google Scholar 

  57. Wen, Z., Liao, W., & Chen, S. (2005). Process Biochemistry, 40, 3087–3094.

    Article  CAS  Google Scholar 

  58. Juhasz, T., Kozma, K., Szengyel, Z., & Reczey, K. (2003). Food Technology Biotechnology, 41, 49–53.

    CAS  Google Scholar 

  59. Dumova, V. A., & Kruglov, Yu V. (2009). Mikrobiologiya, 78, 275–281.

    Google Scholar 

  60. Sunna, A., Prowe, S. G., Stoffregen, T., & Antranikian, G. (1997). FEMS Microbiology Letters, 148, 209–216.

    Article  CAS  Google Scholar 

  61. Kinegam, S., Tanasupawat, S., & Akaracharanya, A. (2007). The Journal of General and Applied Microbiology, 53, 57–65.

    Article  CAS  Google Scholar 

  62. Park, M. J., Kim, M. K., Kim, H. B., Im, W. T., Yi, T. H., Kim, S. Y., et al. (2008). Evolution Microbiology, 60, 478–483.

    Google Scholar 

  63. Kim, K. K., Park, H. Y., Park, W., Kim, I. S., & Lee, S. T. (2005). International Journal of Systematic Evolution Microbiology, 55, 2075–2079.

    Article  CAS  Google Scholar 

  64. Srinivasan, S., Kim, M. K., Sathiyaraj, G., Kim, Y. J., Jung, S. K., In, J. G., et al. (2010). International Journal of Systematic Evolution Microbiology, 60, 478–483.

    Article  CAS  Google Scholar 

  65. Rivas, R., Trujillo, M. E., Sanchez, M., Mateos, P. F., Martınez-Molina, E., & Velazquez, E. (2004). International Journal of Systematic Evolution Microbiology, 54, 513–517.

    Article  CAS  Google Scholar 

  66. Wood, B. E., & Ingram, L. O. (1992). Applied and Environmental Microbiology, 58, 2103–2110.

    CAS  Google Scholar 

  67. Zhou, S., & Ingram, O. (2001). Biotechnology Letters, 23, 1455–1462.

    Article  CAS  Google Scholar 

  68. v. Hofsten, B., Berg, B., & Beskow, S. (1971). Archives of Mikrobiology, 79, 69–79.

    Article  Google Scholar 

  69. Kato, S., Haruta, S., Cui, Z. J., Ishii, M., & Igarashi, Y. (2005). Environmental Microbiology, 71, 7099–7106.

    Article  CAS  Google Scholar 

  70. Boateng, A. A., Anderson, W. F., & Phillips, J. G. (2007). Energy and Fuels, 21, 1183–1187.

    Article  CAS  Google Scholar 

  71. Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Biotechnology and Bioengineering, 36, 275–287.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to DOE for grant support (DE-FG02-07ER84872) and AUM for grant-in-aid. We also give thanks to Serban Peteu and Jeffery Laymon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedict C. Okeke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okeke, B.C., Lu, J. Characterization of a Defined Cellulolytic and Xylanolytic Bacterial Consortium for Bioprocessing of Cellulose and Hemicelluloses. Appl Biochem Biotechnol 163, 869–881 (2011). https://doi.org/10.1007/s12010-010-9091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9091-0

Keywords

Navigation