Skip to main content
Log in

Hydroxytyrosol Acyl Esters: Biosynthesis and Activities

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We previously reported the production of high yields of hydroxytyrosol through the bioconversion of tyrosol. In the present work, hydroxytyrosol was subjected to the lipase catalyzed acylation aiming for the recovery of more lipophilic esters that might be easily incorporated in cosmetic and food preparations. Hydroxytyrosyl acetate and hydroxytyrosyl oleate were produced with respective molar esterification yields of 98% and 78%. DPPH free radical quenching potency demonstrated that the acylation of hydroxytyrosol did not alter its antioxidant activity. The acylated esters were shown to be more effective than the natural antioxidant: caffeic acid and two synthetic ones as BHA and BHT. Antiproliferative activity on human cervical cells (HeLa) resulted in IC50 values of 0.46, 0.42 and 0.33 mM for hydroxytyrosol and its acetyl and oleyl esters, respectively. Additionally, when used at a non-cytotoxic concentration (100 μM), these compounds showed significant effectiveness in preventing iron-induced oxidative stress, resulting in a reduction of 30%, 36% and 38% in thiobarbituric acid-reactive substance production, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BHA:

Butylated hydroxyanisole

BHT:

Butylated hydroxytoluene

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

TBARS:

Thiobarbituric acid-reactive substances

References

  1. Fereidoon, S. (1997). Natural antioxidants: Chemistry, health effects, and applications. USA: AOCS.

    Google Scholar 

  2. Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). The American Journal of Clinical Nutrition, 81(Suppl), 215S–217S.

    CAS  Google Scholar 

  3. Visioli, F., & Galli, C. (2001). World Review of Nutrition and Dietetics, 88, 233–237.

    Article  CAS  Google Scholar 

  4. Jemai, H., Fki, I., Bouaziz, M., Bouallagui, Z., El feki, A., Isoda, H., et al. (2008). Journal of Agricultural and Food Chemistry, 56, 2630–2636.

    Article  CAS  Google Scholar 

  5. Buisman, G. J. H., Van Helteren, C. T. W., Kramer, G. F. H., Veldsink, J. W., Derksen, J. T. P., & Cuperus, F. P. (1998). Biotechnological Letters, 20, 131–136.

    Article  CAS  Google Scholar 

  6. Chamouleau, F., Coulon, D., Girardin, M., & Ghoul, M. (2001). Journal of Molecular Catalysis B, 11, 949–954.

    Article  CAS  Google Scholar 

  7. Villeneuve, P. (2007). Biotechnology Advances, 25, 515–536.

    Article  CAS  Google Scholar 

  8. Bouallagui, Z., & Sayadi, S. (2006). Journal of Agricultural and Food Chemistry, 54, 9906–9911.

    Article  CAS  Google Scholar 

  9. Sabally, K., Karboune, S., Yeboah, F. K., & Kermasha, S. (2005). Applied Biochemistry and Biotechnology, 127, 17–27.

    Article  CAS  Google Scholar 

  10. Bouaziz, M., Lassoued, S., Bouallagui, Z., Smaoui, S., Gargoubi, A., Dhouib, A., et al. (2008). Bioorganic & Medicinal Chemistry, 16, 9238–9246.

    Article  CAS  Google Scholar 

  11. Xi-Yu, C., Min-Hua, Z., Wen-Yong, L., & Hong, W. (2008). Applied Biochemistry and Biotechnology, 151, 21–28.

    Article  Google Scholar 

  12. Bhagwat, S. S., Bevinakatti, H. S., & Mukesh, D. (2005). Biochemical Engineering Journal, 22, 253–259.

    Article  CAS  Google Scholar 

  13. Fki, I., Allouche, N., & Sayadi, S. (2005). Food Chemistry, 93, 197–204.

    Article  CAS  Google Scholar 

  14. Fabiani, R., De Bartolomeo, A., Rosignoli, P., Servili, M., Montedoro, G. F., & Morozzi, G. (2002). European Journal of Cancer Prevention, 11, 351–358.

    Article  CAS  Google Scholar 

  15. Cury-Boaventura, M. F., Pompeia, C., & Curi, R. (2003). Clinical Nutrition, 23, 721–732.

    Article  Google Scholar 

  16. Cury-Boaventura, M. F., Kanunfre, C. C., Gorjao, R., Martins de Lima, T., & Curi, R. (2006). Clinical Nutrition, 25, 1004–1014.

    Article  CAS  Google Scholar 

  17. Schaffer, S., Podstawa, M., Visioli, F., Bogani, P., Müller, W. E., & Eckert, G. P. (2007). Journal of Agricultural and Food Chemistry, 55, 5043–5049.

    Article  CAS  Google Scholar 

  18. Manna, C., Migliardi, V., Sannino, F., De Martino, A., & Capasso, R. (2005). Journal of Agricultural and Food Chemistry, 53, 9602–9607.

    Article  CAS  Google Scholar 

  19. Correa, J. A., Navas, M. D., Muñoz-Marín, J., Trujillo, M., Fernández-Bolaños, J., & De La Cruz, J. P. (2008). Journal of Agricultural and Food Chemistry, 56, 7872–7876.

    Article  Google Scholar 

  20. Correa, J. A., López-Villodres, J. A., Asensi, R., Espartero, J. L., Rodríguez-Gutiérez, G., & De La Cruz, J. P. (2009). The British Journal of Nutrition, 101, 1157–1164.

    Article  CAS  Google Scholar 

  21. Mateos, R., Goya, L., & Bravo, L. (2005). Journal of Agricultural and Food Chemistry, 53, 9897–9899.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Tom C. Arnot for the manuscript revision, Mr. Adel Gargoubi for his assistance for the HPLC analyses and the purification of hydroxytyrosol esters and Mrs. Emna Debbebi for the NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Sayadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouallagui, Z., Bouaziz, M., Lassoued, S. et al. Hydroxytyrosol Acyl Esters: Biosynthesis and Activities. Appl Biochem Biotechnol 163, 592–599 (2011). https://doi.org/10.1007/s12010-010-9065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9065-2

Keywords

Navigation