Skip to main content

Advertisement

Log in

Industrial Sustainability of Competing Wood Energy Options in Canada

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The amount of sawmill residue available in Canada to support the emerging cellulosic ethanol industry was examined. A material flow analysis technique was employed to determine the amount of sawmill residue that could possibly be available to the ethanol industry per annum. A combination of two key trends—improved efficiency of lumber recovery and increased uptake of sawmill residues for self-generation and for wood pellet production—have contributed to a declining trend of sawmill residue availability. Approximately 2.3 × 106 bone-dry tonnes per year of sawmill residue was estimated to be potentially available to the cellulosic ethanol industry in Canada, yielding 350 million liters per year of cellulosic ethanol using best practices. An additional 2.7 billion liters of cellulosic ethanol might be generated from sawmill residue that is currently used for competing wood energy purposes, including wood pellet generation. Continued competition between bioenergy options will reduce the industrial sustainability of the forest industry. Recommendations for policy reforms towards improved industrial sustainability practices are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. WWI (Worldwatch Institute). (2009). State of the world: Into a warming world. Washington: Earthscan. 205.

    Google Scholar 

  2. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., John Cairney, J., Eckert, C. A., et al. (2006). Science, 311(5760), 484–489.

    Article  CAS  Google Scholar 

  3. CRFA (2009) Canadian renewable fuels association. Accessed on June 3, 2009. http://www.greenfuels.org.

  4. Bill C-33 (2008) An Act to amend the Canadian Environmental Protection Act, 1999. Accessed on June 12, 2009. p. 11. http://www2.parl.gc.ca/Content/LOP/LegislativeSummaries/39/2/c33-e.pdf.

  5. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Science, 311, 506–508.

    Article  CAS  Google Scholar 

  6. Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Proceedings of the National Academy of Science (USA), 103, 11206–11210.

    Article  CAS  Google Scholar 

  7. De Oliveira, M. E. D., Vaughan, B. E., & Rykiel, E. J., Jr. (2005). Bioscience, 55, 593–603.

    Article  Google Scholar 

  8. Wang, M. (2001). Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies. Technical Report ANL/ESD/TM-163. Argonne National Laboratory, Argonne, Illinois, USA. p. 40.

  9. Shapouri, H., & McAloon, A. (2004). The 2001 net energy balance of corn ethanol (p. 6). Washington: U.S. Department of Agriculture. Accessed on May 31, 2009. www.usda.gov/oce/reports/energy/net_energy_balance.pdf.

    Google Scholar 

  10. Patzek, T. W. (2004). Critical Reviews in Plant Sciences, 23, 519–567.

    Article  CAS  Google Scholar 

  11. Pimentel, D., & Patzek, T. W. (2005). Natural Resources Research, 14, 65–76.

    Article  CAS  Google Scholar 

  12. Campbell, J. E., Lobell, D. B., Genova, R. C., & Field, C. B. (2008). Environmental Science & Technology, 42, 5791.

    Article  CAS  Google Scholar 

  13. Tilman, D., Hill, J., & Lehman, C. (2006). Science, 314, 1598.

    Article  CAS  Google Scholar 

  14. Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Science, 219, 1235.

    Article  Google Scholar 

  15. Adler, P. R., Del Grosso, S. J., & Parton, W. J. (2007). Ecological Applications, 17, 675–691.

    Article  Google Scholar 

  16. Gibbs, H. K., Johnston, M., Foley, J. A., Holloway, T., Monfreda, C., Ramankutty, N., et al. (2008). Environmental Research Letters, 3, 034001–0340010.

    Article  Google Scholar 

  17. Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., et al. (2008). Science, 319, 1238–1240.

    Article  CAS  Google Scholar 

  18. Pineiro, G., Jobbagy, E. G., Baker, J., Murray, B. C., & Jackson, R. B. (2009). Ecological Applications, 19(2), 277–282.

    Article  Google Scholar 

  19. Dominguez-Faus, R., Powers, S. E., Burken, J. G., & Alvarez, P. J. (2009). Environmental Science & Technology, 43(9), 3005–3010.

    Article  CAS  Google Scholar 

  20. Chiu, Y.-W., Powers, S. E., Walseth, B., & Suh, S. (2009). Environmental Science & Technology, 43(8), 2688–2692.

    Article  CAS  Google Scholar 

  21. Graboski, M. S., & McClelland, J. (2005). A rebuttal to “Ethanol fuels: Energy, economics and environmental impacts” by D. Pimentel. Colorado School of Mines and National Corn Growers Association. p. 1.

  22. Cherubini, F., Bird, N. D., Cowie, A., Jungmeier, G., Schlamadinger, B., & Woess-Gallasch, S. (2009). Resources, Conservation and Recycling, 53, 434–447.

    Article  Google Scholar 

  23. Anex, R. P., & Lifset, R. (2009). Journal of Industrial Ecology, 13(4), 479–482. doi:10.1111/j.1530-9290.2009.00188.x.

    Article  Google Scholar 

  24. (S&T)2 Consultants (2009). An examination of the potential for improving carbon/energy balance in biofuels. Report prepared for the International Energy Agency (IEA) Bioenergy Task 39. p. 59.

  25. Anex, R. P., & Lifset, R. (2009). Journal of Industrial Ecology, 13(6), 996–999.

    Article  Google Scholar 

  26. Liska, A. J., & Cassman, K. G. (2009). Journal of Industrial Ecology, 13(4), 508–513.

    Article  CAS  Google Scholar 

  27. Liska, A. J., & Cassman, K. G. (2009). Letter to the Editor: Responses to “ Comment on ‘Response to Plevin: Implications for Life Cycle Emissions Regulations’ and ‘Assessing Corn Ethanol: Relevance and Responsibility’”. Journal of Industrial Ecology. doi:10.1111/j.1530-9290.2009.00187.x.

    Google Scholar 

  28. Plevin, R. J. (2009). Journal of Industrial Ecology, 13(4), 495–507.

    Article  CAS  Google Scholar 

  29. Plevin, R. J. (2009). Letter to the Editor: Comment on “Response to Plevin: Implications for Life Cycle Emissions Regulations”. Journal of Industrial Ecology. doi:10.1111/j.1530-9290.2009.00174.x.

    Google Scholar 

  30. Chandra, R. P., Ewanick, S. M., Chung, P. A., Au-Yeung, K., Rio, L. D., Mabee, W. E., et al. (2009). Comparison of methods to assess the enzyme accessibility and hydrolysis of pretreated lignocellulosic substrates. Biotechnology Letters, 31, 1217–1222.

    Article  CAS  Google Scholar 

  31. Foust, T. (2009). Presentation to IEA Bioenergy Task 39. Dresden, Germany: June 3, 2009.

  32. Lowe, J. J., Power, K., & Gray, S. L. (1994). Canada’s Forest Inventory 1991, Petawawa National Forestry Institute, Canadian Forest Service, Natural Resources Canada, Information Report PI-X-115, 1994. p. 24.

  33. Brundtland, G. (ed.) (1987). Our common future: the world commission on environment and development. Oxford: Oxford University Press.

  34. Paramanathan, S., Farrukh, C., Phaal, R., & Probert, D. R. (2004). R&D Management, 34(5), 527–537.

    Article  Google Scholar 

  35. Zeng, S. X., Liu, H. C., Tam, C. M., & Shao, Y. K. (2008). Journal of Cleaner Production, 16, 1090–1097.

    Article  Google Scholar 

  36. Bidwell, R., & Verfaillie, H. A. (2000). Measuring eco-efficiency: A guide to reporting company performance. Geneva: World Business Council for Sustainable Development.

    Google Scholar 

  37. Jansson, P. M., Gregory, M. J., Barlow, C., Phaal, R., Farrukh, C. J. P., & Probert, D. R. (2000). Industrial sustainability—a review of UK and international research and capabilities. Cambridge: University of Cambridge.

    Google Scholar 

  38. Perlack, R. D. (2005). Biomass as a feedstock for bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Technical Rep. ORNL/TM 2006/66, Oak Ridge National Laboratory. Oak Ridge, TN.

  39. Davidsdottir, B., & Ruth, M. (2005). Journal of Industrial Ecology, 9(3), 191–211.

    Article  Google Scholar 

  40. Kleijn, R. (1999). Journal of Industrial Ecology, 3(2–3), 8–10.

    Article  Google Scholar 

  41. Bringezu, S., & Moriguchi, Y. (2002). Material flow analysis. In R. U. Ayres & L. Ayres (Eds.), Handbook of industrial ecology. Cheltenham: Elgar.

    Google Scholar 

  42. Wernick, I. K. (1998). Material flow accounts: Definition and data. In P. Vellinga, F. Berkhout, & J. Gupta (Eds.), Managing a material world: Perspective in Industry Ecology. Dordrecht: Kluwer.

    Google Scholar 

  43. Bringezu, S. (2003). Accounting for economy-wide material flows and resource productivity. International experts meeting on material flow accounts and resource productivity. November 25–26. Tokyo, Japan. p. 21.

  44. Daniels, P. (2002). Journal of Industrial Ecology, 6(1), 65–88.

    Article  Google Scholar 

  45. Daniels, P., & Moore, S. (2002). Journal of Industrial Ecology, 5(4), 69–93.

    Article  Google Scholar 

  46. NRC. (2004). Materials count—the case for material flows analysis. National Research Council of the National Academies (p. 124). Washington: National Academies Press.

    Google Scholar 

  47. OECD (Organization for Economic Co-operation and Development). 2004. Chair's Summary: Working Group on Environmental Information and Outlooks. OECD Workshop on Material Flows and Related Indictors. OECD Environment Drectorate, June17–18, 2004 Helsinki, Finland. p. 14.

  48. Wernick, I. K., Waggoner, P. E., & Ausubel, J. H. (1998). Journal of Industrial Ecology, 1(3), 125–145.

    Article  Google Scholar 

  49. Rogich, D. G. (1993). Non-renewable Resources, 5(4), 197–210.

    Article  Google Scholar 

  50. Thomas, V. M., & Graedel, T. E. (2003). Environmental Science & Technology, 37(23), 5383–5388.

    Article  CAS  Google Scholar 

  51. Ayres, R. U. (1978). Application of physical principles to economics. In R. U. Ayres (Ed.), Resources, environment and economics: Applications of the materials-energy balance principle (pp. 37–71). New York: Wiley.

    Google Scholar 

  52. Brunner, P., & Rechberger, H. (2004). Practical handbook of material flow analysis (p. 336). Boca Raton: Lewis.

    Google Scholar 

  53. Graedel, T. E., & Allenby, B. R. (1995). Industrial ecology (p. 416). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  54. Sundin, E., Svensson, N., McLaren, J., & Jackson, J. (2002). Journal of Industrial Ecology, 5(3), 89–102.

    Article  Google Scholar 

  55. Horbach, J. (2005). Sustainability and innovation. In: Indicator systems for sustainable innovations. Physica. ISBN 3-7908-1553-5. p. 211.

  56. Oliver-Sola, J., Nunez, M., Gabarrell, X., Boada, M., & Rieradevall, J. (2007). Journal Industrial Ecology, 11(2), 83–98.

    Article  CAS  Google Scholar 

  57. Dorf, R. C. (2001). Technology, humans and society: Toward a sustainable world. New York: Academic. 421pp.

    Google Scholar 

  58. Natural Resources Canada (2009). Timber Harvest Statistics. Accessed April 1, 2009. http://canadaforests.nrcan.gc.ca/statsprofile/forest/ca

  59. Statistics Canada CANSIM (2009) Lumber Production. Accessed April 1, 2009. http://estat.statcan.gc.ca/cgiwin/cnsmcgi.pgm?LANG=E&RegTkt=&C2Sub=&C2DB=EST&ROOTDIR=ESTAT/&LangFldr=English/&ResultTemplate=ESTAT/CII_Subj&SrchVer=2&ChunkSize=50&CIISubj=4005.

  60. Hatton, T. (1999). Canadian wood residues: a profile of current surplus and regional concentrations. A report prepared for the National Climate Change Process Forest Sector Table. Canadian Forest Service. Industry, Economics and Programmes Branch. p. 15.

  61. NRCAN & FPAC (2006). Natural Resources Canada and Forest Products Association of Canada. Estimated Production, Consumption & Surplus Mill Wood Residues in Canada-2004. A National Report. p. 73.

  62. Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, J., Neilson, E. T., Carroll, A. L., et al. (2008). Nature, 452, 987–990.

    Article  CAS  Google Scholar 

  63. Westfall, J. (2007). 2006 summary of forest health conditions in British Columbia. Victoria: British Columbia Ministry of Forests and Range.

    Google Scholar 

  64. Walton, A., Hughes, J., Eng, M., Fall, A., Shore, T., Riel, B., et al. (2007). Provincial-level projection of the current mountain pine beetle Outbreak. Ministry of Forest and Range, Victoria, 2007. Accessed June 9, 2009. p. 10. http://www.for.gov.bc.ca/hre/bcmpb/BCMPB.v4.BeetleProjection.Update.pdf.

  65. FAOStat (2009). FAO forestry statistics. Accessed June 3, 2009. http://www.fao.org.

  66. Directive 2001/77/EC (2001). Directive on the promotion of electricity produced from renewable sources of energy in the internal market. p. 8. Accessed June 1, 2009. http://eur-lex.europa.eu/pri/en/oj/dat/2001/l_283/l_28320011027en00330040.pdf.

  67. Roberts, D., Carreau, H., & Lethbridge, J. (2007). Convergence of the food, fuel, and fibre markets: A forest sector perspective. B.C. Forum Distinguished Lecture Series in Forest Economics and Policy. University of British Columbia. Canada. Accessed June 15, 2009. http://www.bc-forum.org/lectures.htm.

  68. Mabee, W. E., & Saddler, J. N. (2010). Bioresource Technology, 101, 4806–4813. doi:10.1016/j.biortech.2009.10.098.

    Article  CAS  Google Scholar 

  69. Magelli, F., Boucher, K., Bi, X. T., Melin, S., & Bonoli, A. (2009). Biomass & Bioenergy, 33, 434–441.

    Article  Google Scholar 

  70. Wood Pellet Association of Canada. (2009). Canadian Wood Pellet Industry Summary 2008. Presentation to the 2nd Annual Biomass Conference at Queen’s University, June 1, 2009. Accessed June 15, 2009. http://www.queensu.ca/sbc.

  71. Laan, T., Litman, T. A. & Ronald, S. (2009). Biofuels at what cost? Government support for ethanol and biodiesel in Canada. Global Subsidies Initiative (GSI) International Institute for Sustainable Development (IISD). p. 118.

  72. Tyner, W. E. (2008). BioScience, 58(7), 646–653.

    Article  Google Scholar 

  73. Simpson, D. R. (1999). Productivity in Natural Resource Industries: Improvement through Innovation. Resources for the future.

  74. Ackom, E. K., & McFarlane, P. N. (2006). Impact of technological changes in the North American forest industry. Proceedings of the Second International Conference on Environmentally Compatible Forest Products. pp. 33–46.

  75. Rosenberg, N., Ince, P., Skog, K., & Plantinga, A. (1990). Understanding the adoption of new technology in the forest products industry. Forest Products Journal, 40(10), 15–22.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the International Energy Agency (IEA) Bioenergy Task 39 “Liquid biofuels” and Natural Resources Canada for providing funds that have supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel K. Ackom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackom, E.K., Mabee, W.E. & Saddler, J.N. Industrial Sustainability of Competing Wood Energy Options in Canada. Appl Biochem Biotechnol 162, 2259–2272 (2010). https://doi.org/10.1007/s12010-010-9000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9000-6

Keywords

Navigation