Skip to main content
Log in

A Novel Cold-Active and Alkali-Stable β-Glucosidase Gene Isolated from the Marine Bacterium Martelella mediterranea

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A β-glucosidase gene designated gluc3m was cloned through construction of a genomic library of Martelella mediterranea 2928. The gluc3m consisted of 2,496 bp and encoded a peptide of 832 amino acids that shared the greatest amino acid similarity (59%) with a β-glucosidase of family 3 glycoside hydrolase from Agrobacterium radiobacter K84. The optimum reaction temperature and pH of Gluc3M were 45 °C and 8.0, respectively. The K m and V max for p-nitrophenyl-β-d-glucopyranoside were 0.18 mg/ml and 196.08 µmol/min/mg enzyme, respectively. Gluc3M was found to be highly alkali stable, retaining 80% of its maximum enzymatic activity after treatment with pH 11.0 buffers for 24 h. Furthermore, the activity of Gluc3M improved remarkably in the presence of univalent metal ions, whereas it was inhibited in the presence of divalent ions. Gluc3M also exhibited significant activities toward various substrates including pNPGlu, pNPGal, salicin, and konjac powder. It is important to note that Gluc3M is a cold-active enzyme that showed over 50% of the maximum enzymatic activity at 4 °C. SWISS-MODEL revealed that the amino acids near the conserved domain SDW of Gluc3M contributed to the cold-active ability. Based on these characteristics, Gluc3M has the potential for use in additional studies and for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Voorhorst, W. G., Eggen, R. I., Luesink, E. J., & De Vos, W. M. (1995). Journal of Bacteriology, 177, 7105–7111.

    CAS  Google Scholar 

  2. Romero, M. D., Aguado, J., González, L., & Ladero, M. (1999). Enzyme and Microbial Technology, 25, 244–250.

    Article  CAS  Google Scholar 

  3. Planas, A. (2000). Biochimica et Biophysica Acta, 1543, 361–382.

    CAS  Google Scholar 

  4. Hers, H. G. (1963). The Biochemical Journal, 86, 11–16.

    CAS  Google Scholar 

  5. Gueguen, Y., Chemardin, P., Pien, S., Arnaud, A., & Galzy, P. (1997). Journal of Biotechnology, 55, 151–156.

    Article  CAS  Google Scholar 

  6. Feller, G., & Gerday, C. (2003). Nature Reviews. Microbiology, 1, 200–208.

    Article  CAS  Google Scholar 

  7. Zhao, X., Gao, L., Wang, J., Bi, H., Gao, J., Du, X., et al. (2009). Process Biochemistry, 44, 612–618.

    Article  CAS  Google Scholar 

  8. Meng, X., Shao, Z., Hong, Y., Lin, L., Li, C., & Liu, Z. (2009). Journal of Microbiology and Biotechnology, 19, 1077–1884.

    CAS  Google Scholar 

  9. Li, C. J., Hong, Y., Shao, Z., Lin, L., Huang, X., Liu, P., et al. (2009). Journal of Microbiology and Biotechnology, 19, 873–880.

    Article  CAS  Google Scholar 

  10. Henrissat, B. (1991). The Biochemical Journal, 280, 309–316.

    CAS  Google Scholar 

  11. Rivas, R., Sanchez, M. S., Mateos, P. F., Martinez, M. E., & Velazquez, E. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 955–959.

    Article  CAS  Google Scholar 

  12. Keresztessy, Z., Hughes, J., Kiss, L., & Hughes, M. A. (1996). The Biochemical Journal, 314, 41–47.

    CAS  Google Scholar 

  13. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  14. Herr, D., Baumer, F., & Dellweg, H. (1978). Applied Microbiology and Biotechnology, 5, 29–36.

    Article  CAS  Google Scholar 

  15. Cai, Y. J., Buswell, J. A., & Chang, S. T. (1998). Enzyme and Microbial Technology, 22, 122–129.

    Article  CAS  Google Scholar 

  16. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  17. Dodd, D., Kocherginskaya, S. A., Spies, M. A., Beery, K. E., Abbas, C. A., Mackie, R. I., et al. (2009). Journal of Bacteriology, 191, 3328–3338.

    Article  CAS  Google Scholar 

  18. Campbell, J. A., Davies, G. J., Bulone, V., & Henrissat, B. (1997). The Biochemical Journal, 326, 929–939.

    CAS  Google Scholar 

  19. Helland, R., Larsen, R. L., & Ásgeirsson, B. (2009). Biochimica et Biophysica Acta, 1794, 297–308.

    CAS  Google Scholar 

  20. Li, Y. K., Chir, J., & Chen, F. Y. (2001). The Biochemical Journal, 355, 835–840.

    Article  CAS  Google Scholar 

  21. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  22. Bauvois, C., Jacquamet, L., Huston, A. L., Borel, F., Feller, G., & Ferrer, J. L. (2008). The Journal of Biological Chemistry, 283, 23315–23325.

    Article  CAS  Google Scholar 

  23. Huston, A. L., Methe, B., & Deming, J. W. (2004). Applied and Environmental Microbiology, 70, 3321–3328.

    Article  CAS  Google Scholar 

  24. Bauer, M. W., Bylina, E. J., Swanson, R. V., & Kelly, R. M. (1996). The Journal of Biological Chemistry, 271, 23749–23755.

    Article  CAS  Google Scholar 

  25. Brenchley, J. E. (1996). Journal of Industrial Microbiology & Biotechnology, 17, 432–437.

    Article  CAS  Google Scholar 

  26. Morita, Y., Nakamura, T., Hasan, Q., Murakami, Y., Yokoyama, K., & Tamiya, E. (1997). Journal of the American Oil Chemists' Society, 74, 441–444.

    Article  CAS  Google Scholar 

  27. Basha, S., Rai, P., Poon, V., Saraph, A., Gujraty, K., Go, M. Y., et al. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 13509–13513.

    Article  CAS  Google Scholar 

  28. Sveinbjornsson, J., Murphy, M., & Uden P. (2007). Animal Feed Science and Technology, 132, 171–185.

    Article  Google Scholar 

  29. Hayashi, S., Sako, S., Yokoi, H., Takasaki, Y., & Imada, K. (1999). Journal of Industrial Microbiology & Biotechnology, 22, 160–163.

    Article  CAS  Google Scholar 

  30. Gueguen, Y., Chemardin, P., Labrot, P., Arnaud, A., & Galzy, P. (1997). Journal of Applied Microbiology, 82, 469–476.

    Article  CAS  Google Scholar 

  31. Singh, A., & Hayashi, K. (1995). Journal of Applied Biological Chemistry, 270, 21928–21933.

    CAS  Google Scholar 

  32. Mosavi, L. K., & Peng, Z. (2003). Protein Engineering, Design & Selection, 16, 739–745.

    Article  CAS  Google Scholar 

  33. Shipkowski, S., & Brenchley, J. E. (2005). Applied and Environmental Microbiology, 71, 4225–4232.

    Article  CAS  Google Scholar 

  34. Lin, T. C., & Chen, C. (2004). Process Biochemistry, 39, 1103–1109.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Qifa Zhang for support and for helpful discussions. This study was supported by grants from the National Natural Science Foundation of China (30570057 and 30770021) and the 111 project (B07041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziduo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, X., Hong, Y., Shao, Z. et al. A Novel Cold-Active and Alkali-Stable β-Glucosidase Gene Isolated from the Marine Bacterium Martelella mediterranea . Appl Biochem Biotechnol 162, 2136–2148 (2010). https://doi.org/10.1007/s12010-010-8988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8988-y

Keywords

Navigation