Skip to main content

Advertisement

Log in

A Statistical Approach for Optimization of Polyhydroxybutyrate Production by Bacillus sphaericus NCIM 5149 under Submerged Fermentation Using Central Composite Design

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work was to statistically optimize the cultural and nutritional parameters for the production of polyhydroxybutyrate (PHB) under submerged fermentation using jackfruit seed hydrolysate as the sole carbon source. On the basis of results obtained from “one variable at a time” experiment, inoculum age, jackfruit seed hydrolysate concentration, and pH were selected for response surface methodology studies. A central composite design (CCD) was employed to get the optimum level of these three factors to maximize the PHB production. The CCD results predicted that jackfruit seed hydrolysates containing 2.5% reducing sugar, inoculum age of 18 h, and initial medium pH 6 could enhance the production of PHB to reach 49% of the biomass (biomass 4.5 g/l and PHB concentration 2.2 g/l). Analysis of variance exhibited a high coefficient of determination (R 2) value of 0.910 and 0.928 for biomass and PHB concentration, respectively, and ensured that the quadratic model with the experimental data was a satisfactory one. This is the first report on PHB production by Bacillus sphaericus using statistical experimental design and RSM in submerged fermentation with jackfruit seed hydrolysate as the sole source of carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PHB:

Polyhydroxybutyrate

SmF:

Submerged fermentation

CCD:

Central composite design

RSM:

Response surface methodology

References

  1. Panda, B., Jain, P., Sharma, L., & Mallick, N. (2006). Bioresource Technology, 97, 1296–1301.

    Article  CAS  Google Scholar 

  2. Lee, S. Y. (1996). Biotechnology and Bioengineering, 49, 1–14.

    Article  CAS  Google Scholar 

  3. Verlinden, R. A. J., Hill, D. J., Kenward, M. A., Williams, C. D., & Radecka, I. (2007). Journal of Applied Microbiology, 102, 1437–1449.

    Article  CAS  Google Scholar 

  4. Slepecky, R. A., & Law, J. H. (1961). Journal of Bacteriology, 182, 37–42.

    Google Scholar 

  5. Madison, L. L., & Huisman, G. W. (1999). Microbiology and Molecular Biology Reviews, 63, 21–53.

    CAS  Google Scholar 

  6. Jendrossek, D., & Handrick, R. (2002). Annual Review of Microbiology, 56, 403–428.

    Article  CAS  Google Scholar 

  7. Tokiwa, Y., & Calabia, B. P. (2004). Biotechnology Letters, 26, 771–777.

    Article  CAS  Google Scholar 

  8. Braunegg, G., Lefebyre, G., & Genser, K. F. (1998). Journal of Biotechnology, 65, 127–161.

    Article  CAS  Google Scholar 

  9. Choi, J. I., & Lee, S. Y. (1997). Bioprocess Engineering, 17, 335–342.

    Article  CAS  Google Scholar 

  10. Sangkharak, K., & Prasertsan, P. (2007). Journal of Biotechnology, 132, 331–340.

    Article  CAS  Google Scholar 

  11. Zhang, J., Marcin, C., Shifflet, M. A., Salmon, P., Brix, T., Greasham, R., et al. (1996). Applied Microbiology and Biotechnology, 44, 568–575.

    Article  CAS  Google Scholar 

  12. Nikel, P. I., Pettinari, M. J., Mendez, B. S., & Galvagno, M. A. (2005). International Microbiology, 8, 243–250.

    CAS  Google Scholar 

  13. Montgomery, D. C. (1997). Design and analysis of experiments (4th ed.). New York: Wiley.

    Google Scholar 

  14. Lee, K. M., & Gilmore, D. F. (2005). Process Biochemistry, 40, 229–246.

    Article  CAS  Google Scholar 

  15. Shilpi, K., & Srivastava, A. K. (2005). Process Biochemistry, 40, 2173–2182.

    Article  CAS  Google Scholar 

  16. Vijayendra, S. V. N., Rastogi, N. K., Shamala, T. R., Anil Kumar, P. K., Kshama, L., & Joshi, G. J. (2007). Indian Journal of Microbiology, 47, 170–175.

    Article  CAS  Google Scholar 

  17. Purushothaman, M., Anderson, R. K. I., Narayana, S., & Jayaraman, V. K. (2001). Bioprocess and Biosystems Engineering, 24, 131–136.

    Article  CAS  Google Scholar 

  18. Gouda, M. K., Swellam, A. E., & Sanaa, H. (2001). Omar. Microbiological Research, 156, 201–207.

    Article  CAS  Google Scholar 

  19. Grothea, E., Younga, M. M., & Chistib, Y. (1999). Enzyme and Microbial Technology, 25, 132–141.

    Article  Google Scholar 

  20. Thuoc, D. V., Quillaguaman, J., Mamo, G., & Mattiasson, B. (2008). Journal of Applied Microbiology, 104, 420–428.

    Google Scholar 

  21. Ramadas, N. V., Singh, S. K., Soccol, C. R., & Pandey, A. (2008). Brazilian Archives of Biology and Technology, 51, 599–604.

    Google Scholar 

  22. Full, T. D., Jung, D. O., & Madigan, M. T. (2006). Letters in Applied Microbiology, 43, 377–384.

    Article  CAS  Google Scholar 

  23. Gouda, M. K., Swellam, A. E., & Omar, S. H. (2001). Microbiological Research, 156, 201–207.

    Article  CAS  Google Scholar 

  24. Morton, J. F. (1987). Jackfruit. In: Fruits of warm climates. Miami: Creative Resources Systems Inc, pp. 58–64.

  25. Bertani, G. (1951). Journal of Bacteriology, 62, 293–300.

    CAS  Google Scholar 

  26. Rojan, P. J., Nampoothiri, K. M., Nair, A. S., & Pandey, A. (2005). Biotechnology Letters, 27, 1685–1688.

    Article  CAS  Google Scholar 

  27. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Google Scholar 

  28. Slepecky, R. A., & Law, J. H. (1960). Analytical Chemistry, 1960(32), 1697–1699.

    Article  Google Scholar 

  29. Haaland, P. D. (1989). Statistical problem solving. In P. D. Haaland (Ed.), Experimental design in biotechnology. New York: Marcel Dekker Incorporation.

    Google Scholar 

  30. Palleroni, N. J., & Palleroni, A. V. (1978). International Journal of Systematic Bacteriology, 28, 416–424.

    Article  Google Scholar 

  31. Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K. M., et al. (2008). Bioresource Technology, 99, 4597–4602.

    Article  CAS  Google Scholar 

  32. Khosravi-Darani, K., Vasheghani-Farahani, E., & Shojaosadati, S. A. (2004). Iranian Journal of Chemistry & Chemical Engineering, 23, 131–136.

    Google Scholar 

  33. Tabandeh, F., & Farahani, E. V. (2003). Iranian Polymer Journal, 12, 37–42.

    CAS  Google Scholar 

  34. Rahman, M. A., Nahar, V., Jabbar, M. A., & Mosihuzzaman, M. (1999). Food Chemistry, 1999(65), 91–97.

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (NVR) would like to acknowledge the financial assistance from the Council of Scientific and Industrial Research (CSIR), New Delhi, India by awarding Senior Research Fellowship during the course of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramadas, N.V., Soccol, C.R. & Pandey, A. A Statistical Approach for Optimization of Polyhydroxybutyrate Production by Bacillus sphaericus NCIM 5149 under Submerged Fermentation Using Central Composite Design. Appl Biochem Biotechnol 162, 996–1007 (2010). https://doi.org/10.1007/s12010-009-8807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8807-5

Keywords

Navigation